

 SYLLABUS

 CS2259-MICROPROCESSORS LABORATORY

1. Programming with 8085

2. Programming with 8086-experiments including BIOS/DOS calls:

 Keyboard control, Display, File Manipulation.

3. Interfacing with 8085/8086-8255,8253

4. Interfacing with 8085/8086-8279,8251

5. 8051 Microcontroller based experiments for Control Applications

6. Mini- Project

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 2

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 3

1. Assemply Language programs in 8085

(A). 8 BIT DATA ADDITION

AIM:

 To add two 8 bit numbers stored at consecutive memory locations.

ALGORITHM:

1. Initialize memory pointer to data location.

2. Get the first number from memory in accumulator.

3. Get the second number and add it to the accumulator.

4. Store the answer at another memory location.

RESULT:

Thus the 8 bit numbers stored at 4500 &4501 are added and the result stored at 4502 &

4503.

FLOW CHART:

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 4

 NO

 YES

START

[HL] 4500H

[A] [M]

[A] [A]+[M]

[HL] [HL]+1

STOP

[HL] [HL]+1

[M] [A]

[C] 00H

[M] [C]

[HL] [HL]+1

Is there a

 Carry ?

[C] [C]+1

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 5

PROGRAM:

ADDRESS OPCODE LABEL MNEMONICS OPERAND COMMENT

4100 START MVI C, 00 Clear C reg.

4101

4102 LXI H, 4500 Initialize HL reg. to

4500 4103

4104

4105 MOV A, M Transfer first data to

accumulator

4106 INX H Increment HL reg. to

point next memory

Location.

4107 ADD M Add first number to

acc. Content.

4108 JNC L1 Jump to location if

result does not yield

carry.
4109

410A

410B INR C Increment C reg.

410C L1 INX H Increment HL reg. to

point next memory

Location.

410D MOV M, A Transfer the result from

acc. to memory.

410E INX H Increment HL reg. to

point next memory

Location.

410F MOV M, C Move carry to memory

4110 HLT Stop the program

OBSERVATION:

INPUT OUTPUT

4500 4502

4501 4503

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 6

2(B). 8 BIT DATA SUBTRACTION

AIM:

 To Subtract two 8 bit numbers stored at consecutive memory locations.

ALGORITHM:

1. Initialize memory pointer to data location.

2. Get the first number from memory in accumulator.

3. Get the second number and subtract from the accumulator.

4. If the result yields a borrow, the content of the acc. is complemented and 01H is

added to it (2‟s complement). A register is cleared and the content of that reg. is

incremented in case there is a borrow. If there is no borrow the content of the acc.

is directly taken as the result.

5. Store the answer at next memory location.

RESULT:

Thus the 8 bit numbers stored at 4500 &4501 are subtracted and the result stored at 4502

& 4503.

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 7

FLOW CHART:

 NO

 YES

START

[HL] 4500H

[A] [M]

Is there a

 Borrow ?

[A] [A]-[M]

[HL] [HL]+1

[C] 00H

[C] [C]+1

STOP

[HL] [HL]+1

[M] [A]

[M] [C]

[HL] [HL]+1

Complement [A]

Add 01H to [A]

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 8

PROGRAM:

ADDRESS OPCODE LABEL MNEMONICS OPERAND COMMENT

4100 START MVI C, 00 Clear C reg.

4102

4102 LXI H, 4500 Initialize HL reg. to

4500 4103

4104

4105 MOV A, M Transfer first data to

accumulator

4106 INX H Increment HL reg. to

point next mem.

Location.

4107 SUB M Subtract first number

from acc. Content.

4108 JNC L1 Jump to location if

result does not yield

borrow.
4109

410A

410B INR C Increment C reg.

410C CMA Complement the Acc.

content

410D ADI 01H Add 01H to content of

acc. 410E

410F L1 INX H Increment HL reg. to

point next mem.

Location.

4110 MOV M, A Transfer the result from

acc. to memory.

4111 INX H Increment HL reg. to

point next mem.

Location.

4112 MOV M, C Move carry to mem.

4113 HLT Stop the program

OBSERVATION:

INPUT OUTPUT

4500 4502

4501 4503

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 9

3(A). 8 BIT DATA MULTIPLICATION

AIM:

 To multiply two 8 bit numbers stored at consecutive memory locations and store

the result in memory.

ALGORITHM:

LOGIC: Multiplication can be done by repeated addition.

1. Initialize memory pointer to data location.

2. Move multiplicand to a register.

3. Move the multiplier to another register.

4. Clear the accumulator.

5. Add multiplicand to accumulator

6. Decrement multiplier

7. Repeat step 5 till multiplier comes to zero.

8. The result, which is in the accumulator, is stored in a memory location.

RESULT:

Thus the 8-bit multiplication was done in 8085p using repeated addition method.

FLOW CHART:

[HL] 4500

 B  M

START

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 10

 NO

 YES

 NO

 YES

 A  00

 C  00

Is there

any carry

 C  C+1

 B  B-1

 [A]  [A] +[M]

[HL]  [HL]+1

IS B=0

A

STOP

[HL] [HL]+1

[M] [A]

[M] [C]

[HL] [HL]+1

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 11

PROGRAM:

ADDRESS OPCODE LABEL MNEMONICS OPERAND COMMENT

4100 START LXI H, 4500 Initialize HL reg. to

4500

Transfer first data to

reg. B

4101

4102

4103 MOV B, M

4104 INX H Increment HL reg. to

point next mem.

Location.

4105 MVI A, 00H Clear the acc.

 4106

4107 MVI C, 00H Clear C reg for carry

4108

4109 L1 ADD M Add multiplicand

multiplier times.

410A JNC NEXT Jump to NEXT if there

is no carry 410B

410C

410D INR C Increment C reg

410E NEXT DCR B Decrement B reg

410F JNZ L1 Jump to L1 if B is not

zero. 4110

4111

4112 INX H Increment HL reg. to

point next mem.

Location.

4113 MOV M, A Transfer the result from

acc. to memory.

4114 INX H Increment HL reg. to

point next mem.

Location.

4115 MOV M, C Transfer the result from

C reg. to memory.

4116 HLT Stop the program

OBSERVATION:

INPUT OUTPUT

4500 4502

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 12

4501 4503

3(B). 8 BIT DIVISION

AIM:

 To divide two 8-bit numbers and store the result in memory.

ALGORITHM:

LOGIC: Division is done using the method Repeated subtraction.

1. Load Divisor and Dividend

2. Subtract divisor from dividend

3. Count the number of times of subtraction which equals the quotient

4. Stop subtraction when the dividend is less than the divisor .The dividend now

becomes the remainder. Otherwise go to step 2.

5. stop the program execution.

RESULT:

 Thus an ALP was written for 8-bit division using repeated subtraction method and

executed using 8085 p kits

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 13

FLOWCHART:

 NO

 YES

B  00

M  A-M

 [B]  [B] +1

IS A<0

 A  A+ M

 B  B-1

[HL] 4500

 A  M

[HL]  [HL]+1

START

STOP

[HL] [HL]+1

[M] [A]

[M] [B]

[HL] [HL]+1

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 14

PROGRAM:

ADDRESS OPCODE LABEL MNEMO

NICS

OPERA

ND

COMMENTS

4100 MVI B,00 Clear B reg for quotient

4101

4102 LXI H,4500 Initialize HL reg. to

4500H 4103

4104

4105 MOV A,M Transfer dividend to acc.

4106 INX H Increment HL reg. to point

next mem. Location.

4107 LOOP SUB M Subtract divisor from dividend

4108 INR B Increment B reg

4109 JNC LOOP Jump to LOOP if result does

not yield borrow 410A

410B

410C ADD M Add divisor to acc.

410D DCR B Decrement B reg

410E INX H Increment HL reg. to point

next mem. Location.

410F MOV M,A Transfer the remainder from

acc. to memory.

4110 INX H Increment HL reg. to point

next mem. Location.

4111 MOV M,B Transfer the quotient from B

reg. to memory.

4112 HLT Stop the program

OBSERVATION:

S.NO INPUT OUTPUT

ADDRESS DATA ADDRESS DATA

1 4500 4502

4501 4503

2 4500 4502

 4501 4503

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 15

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 16

4(A). 16 BIT DATA ADDITION

AIM:

 To add two 16-bit numbers stored at consecutive memory locations.

ALGORITHM:

1. Initialize memory pointer to data location.

2. Get the first number from memory and store in Register pair.

3. Get the second number in memory and add it to the Register pair.

4. Store the sum & carry in separate memory locations.

RESULT:

Thus an ALP program for 16-bit addition was written and executed in 8085p

using special instructions.

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 17

FLOW CHART:

 NO

 YES

START

[DE] [HL]

[L] [8052H]

[H] [8053H]

[A] 00H

[HL] [HL]+[DE]

[L] [8050 H]

[H] [8051 H]

Is there a

 Carry?

STOP

[8054] [L]

[8055] [H]

[A] [A]+1

[8056] [A]

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 18

PROGRAM:

ADDRESS OPCODE LABEL MNEMONICS OPERAND COMMENT

8000 START LHLD 8050H Load the augend in DE

pair through HL pair. 8001

8002

8003 XCHG

8004 LHLD 8052H Load the addend in HL

pair. 8005

8006

8007 MVI A, 00H Initialize reg. A for

carry 8008

8009 DAD D Add the contents of HL

Pair with that of DE

pair.

800A JNC LOOP If there is no carry, go

to the instruction

labeled LOOP.
800B

800C

800D INR A Otherwise increment

reg. A

800E LOOP SHLD 8054H Store the content of HL

Pair in 8054H(LSB of

sum)
800F

8010

8011 STA 8056H Store the carry in

8056H through Acc.

(MSB of sum).
8012

8013

8014 HLT Stop the program.

OBSERVATION:

INPUT OUTPUT

ADDRESS DATA ADDRESS DATA

8050H 8054H

8051H 8055H

8052H 8056H

8053H

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 19

4(B). 16 BIT DATA SUBTRACTION

AIM:

 To subtract two 16-bit numbers stored at consecutive memory locations.

ALGORITHM:

1. Initialize memory pointer to data location.

2. Get the subtrahend from memory and transfer it to register pair.

3. Get the minuend from memory and store it in another register pair.

4. Subtract subtrahend from minuend.

5. Store the difference and borrow in different memory locations.

RESULT:

Thus an ALP program for subtracting two 16-bit numbers was written and

executed.

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 20

FLOW CHART:

 NO

 YES

START

[DE] [HL]

[L] [8052H]

[H] [8053H]

[HL] [HL]-[DE]

[L] [8050 H]

[H] [8051 H]

Is there a

 borrow?

STOP

[8054] [L]

[8055] [H]

[C] [C]+1

[8056] [C]

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 21

PROGRAM:

ADDRESS OPCODE LABEL MNEMO

NICS

OPER

AND

COMMENTS

8000 START MVI C, 00 Initialize C reg.

8001

8002 LHLD 8050H Load the subtrahend in DE

reg. Pair through HL reg.

pair.
8003

8004

8005 XCHG

8006 LHLD 8052H Load the minuend in HL reg.

Pair. 8007

8008

8009 MOV A, L Move the content of reg. L to

Acc.

800A SUB E Subtract the content of reg.

E from that of acc.

800B MOV L, A Move the content of Acc. to

reg. L

800C MOV A, H Move the content of reg. H

to Acc.

800D SBB D Subtract content of reg. D

with that of Acc.

800E MOV H, A Transfer content of acc. to

reg. H

800F SHLD 8054H Store the content of HL pair

in memory location 8504H. 8010

8011

8012 JNC NEXT If there is borrow, go to the

instruction labeled NEXT. 8013

8014

8015 INR C Increment reg. C

8016 NEXT MOV A, C Transfer the content of reg. C

to Acc.

8017 STA 8056H Store the content of acc. to

the memory location 8506H 8018

8019

801A HLT Stop the program execution.

OBSERVATION:

INPUT OUTPUT

ADDRESS DATA ADDRESS DATA

8050H 8054H

8051H 8055H

8052H 8056H

8053H

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 22

5(A). 16 BIT MULTIPLICATION

AIM:

 To multiply two 16 bit numbers and store the result in memory.

ALGORITHM:

1. Get the multiplier and multiplicand.

2. Initialize a register to store partial product.

3. Add multiplicand, multiplier times.

4. Store the result in consecutive memory locations.

RESULT:

Thus the 16-bit multiplication was done in 8085p using repeated addition

method.

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 23

FLOWCHART:

 NO

 YES

 NO

 YES

START

L [8050]

H [8051]

L [8052]

H [8053]

SP HL

DE HL

HL 0000

BC 0000

HL HL+SP

Is Carry

flag set?

BC BC+1

DE DE+1

Is Zero flag

set?

A

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 24

A

[8054] L

[8055] H

[8056] C

[8057] B

STOP

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 25

ADDRESS OPCODE LABEL MNEM

ONICS

OPERAN

D

COMMENTS

8000 START LHLD 8050 Load the first No. in stack pointer

through HL reg. pair 8001

8002

8003 SPHL

8004 LHLD 8052 Load the second No. in HL reg.

pair

& Exchange with DE reg. pair.
8005

8006

8007 XCHG

8008 LXI H, 0000H

Clear HL & DE reg. pairs.
8009

800A

800B LXI B, 0000H

800C

800D

800E LOOP DAD SP Add SP with HL pair.

800F JNC NEXT If there is no carry, go to the

instruction labeled NEXT 8010

8011

8012 INX B Increment BC reg. pair

8013 NEXT DCX D Decrement DE reg. pair.

8014 MOV A,E Move the content of reg. E to Acc.

8015 ORA D OR Acc. with D reg.

8016 JNZ LOOP If there is no zero, go to

instruction labeled LOOP 8017

8018

8019 SHLD 8054 Store the content of HL pair in

memory locations 8054 & 8055. 801A

801B

801C MOV A, C Move the content of reg. C to Acc.

801D STA 8056 Store the content of Acc. in

memory location 8056. 801E

801F

8020 MOV A, B Move the content of reg. B to Acc.

8021 STA 8057 Store the content of Acc. in

memory location 8056. 8022

8023

8024 HLT Stop program execution

OBSERVATION:
INPUT OUTPUT

ADDRESS DATA ADDRESS DATA

8050 8054

8051 8055

8052 8056

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 26

8053 8057

5(B). 16- BIT DIVISION

AIM:

 To divide two 16-bit numbers and store the result in memory using 8085

mnemonics.

ALGORITHM:

1. Get the dividend and divisor.

2. Initialize the register for quotient.

3. Repeatedly subtract divisor from dividend till dividend becomes less than divisor.

4. Count the number of subtraction which equals the quotient.

5. Store the result in memory.

RESULT:

Thus the 16-bit Division was done in 8085p using repeated subtraction method.

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 27

FLOWCHART:

 NO

 YES

START

L [8051]

H [8052]

HL DE

L [8050]

H [8051]

BC 0000H

A L; A A- E

L A

A H

A A- H- Borrow

H A

BC BC+ 1

Is Carry

flag set ?

A

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 28

A

BC BC- 1

HL HL+DE

L [8054]

H [8055]

A C

[8056] A

A B

[8057] A

STOP

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 29

PROGRAM:

ADDRESS OPCODE LABEL MNEM

ONICS

OPERA

ND

COMMENTS

8000 START LHLD 8052 Load the first No. in stack pointer

through HL reg. pair 8001

8002

8003 XCHG

8004 LHLD 8050 Load the second No. in HL reg. pair

& Exchange with DE reg. pair. 8005

8006

8007 LXI B, 0000H

Clear BC reg. pair. 8008

8009

800A LOOP MOV A, L Move the content of reg. L to Acc.

800B SUB E Subtract reg. E from that of Acc.

800C MOV L, A Move the content of Acc to L.

800D MOV A, H Move the content of reg. H Acc.

800E SBB D Subtract reg. D from that of Acc.

800F MOV H, A Move the content of Acc to H.

8010 INX B Increment reg. Pair BC

8011 JNC LOOP If there is no carry, go to the location

labeled LOOP. 8012

8013

8014 DCX B Decrement BC reg. pair.

8015 DAD D Add content of HL and DE reg. pairs.

8016 SHLD 8054 Store the content of HL pair in 8054 &

8055. 8017

8018

8019 MOV A, C Move the content of reg. C to Acc.

801A STA 8056 Store the content of Acc. in memory

8056 801B

801C

801D MOV A, B Move the content of reg. B to Acc.

801E STA 8057 Store the content of Acc. in memory

8057. 801F

8020

8021 HLT Stop the program execution.

OBSERVATION:

INPUT OUTPUT

ADDRESS DATA ADDRESS DATA

8050 8054

8051 8055

8052 8056

8053 8057

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 30

6(A). LARGEST ELEMENT IN AN ARRAY

AIM:

 To find the largest element in an array.

ALGORITHM:

1. Place all the elements of an array in the consecutive memory locations.

2. Fetch the first element from the memory location and load it in the accumulator.

3. Initialize a counter (register) with the total number of elements in an array.

4. Decrement the counter by 1.

5. Increment the memory pointer to point to the next element.

6. Compare the accumulator content with the memory content (next

element).

7. If the accumulator content is smaller, then move the memory content

(largest element) to the accumulator. Else continue.

8. Decrement the counter by 1.

9. Repeat steps 5 to 8 until the counter reaches zero

10. Store the result (accumulator content) in the specified memory location.

RESULT:

 Thus the largest number in the given array is found out.

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 31

FLOW CHART:

 NO

 YES

 NO

 YES

[B]  04H

[HL]  [8100H]

[A]  [HL]

[HL  [HL] + 1

IS

[A] < [HL]?

[A] [HL]

[8105]  [A]

 START

[B]  [B]-1

IS

[B] = 0?

 STOP

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 32

PROGRAM:

ADDRE

SS

OPCO

DE

LABEL MNEM

ONICS

OPER

AND

COMMENTS

8001 LXI H,8100 Initialize HL reg. to

8100H 8002

8003

8004 MVI B,04 Initialize B reg with no. of

comparisons(n-1) 8005

8006 MOV A,M Transfer first data to acc.

8007 LOOP1 INX H Increment HL reg. to point

next memory location

8008 CMP M Compare M & A

8009 JNC LOOP If A is greater than M then go

to loop 800A

800B

800C MOV A,M Transfer data from M to A reg

800D LOOP DCR B Decrement B reg

800E JNZ LOOP1 If B is not Zero go to loop1

800F

8010

8011 STA 8105 Store the result in a memory

location. 8012

8013

8014 HLT Stop the program

OBSERVATION:

INPUT OUTPUT

ADDRESS DATA ADDRESS DATA

8100 8105

8101

8102

8103

8104

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 33

6(B). SMALLEST ELEMENT IN AN ARRAY

AIM:

 To find the smallest element in an array.

ALGORITHM:

1. Place all the elements of an array in the consecutive memory locations.

2. Fetch the first element from the memory location and load it in the accumulator.

3. Initialize a counter (register) with the total number of elements in an array.

4. Decrement the counter by 1.

5. Increment the memory pointer to point to the next element.

6. Compare the accumulator content with the memory content (next

element).

7. If the accumulator content is smaller, then move the memory content

(largest element) to the accumulator. Else continue.

8. Decrement the counter by 1.

9. Repeat steps 5 to 8 until the counter reaches zero

10. Store the result (accumulator content) in the specified memory location.

RESULT:

 Thus the smallest number in the given array is found out.

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 34

FLOW CHART:

 YES

 NO

 NO

 YES

[B]  04H

[HL]  [8100H]

[A]  [HL]

[HL  [HL] + 1

IS

[A] < [HL]?

[A] [HL]

[8105]  [A]

 START

[B]  [B]-1

IS

[B] = 0?

 STOP

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 35

PROGRAM:

ADDRE

SS

OPCO

DE

LABEL MNEM

ONICS

OPER

AND

COMMENTS

8001 LXI H,8100 Initialize HL reg. to

8100H 8002

8003

8004 MVI B,04 Initialize B reg with no. of

comparisons(n-1) 8005

8006 MOV A,M Transfer first data to acc.

8007 LOOP1 INX H Increment HL reg. to point

next memory location

8008 CMP M Compare M & A

8009 JC LOOP If A is lesser than M then go

to loop 800A

800B

800C MOV A,M Transfer data from M to A reg

800D LOOP DCR B Decrement B reg

800E JNZ LOOP1 If B is not Zero go to loop1

800F

8010

8011 STA 8105 Store the result in a memory

location. 8012

8013

8014 HLT Stop the program

OBSERVATION:

INPUT OUTPUT

ADDRESS DATA ADDRESS DATA

8100 8105

8101

8102

8103

8104

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 36

7(A).ASCENDING ORDER

AIM:

 To sort the given number in the ascending order using 8085 microprocessor.

ALGORITHM:

 1. Get the numbers to be sorted from the memory locations.

 2. Compare the first two numbers and if the first number is larger than second then I

interchange the number.

3. If the first number is smaller, go to step 4

 4. Repeat steps 2 and 3 until the numbers are in required order

RESULT:

 Thus the ascending order program is executed and thus the numbers are arranged

in ascending order.

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 37

FLOWCHART:

 YES

 NO

[B]  04H

[HL]  [8100H]

[A]  [HL]

[HL  [HL] + 1

IS

[A] < [HL]?

[D] [HL]

[HL]  [A]

[HL]  [HL] - 1

[HL]  [D]

[HL]  [HL] + 1

[C]  [C] – 01 H

A

[C]  04H

 START

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 38

 NO

 YES

 NO

 YES

IS

[C] = 0?

A

[B]  [B]-1

IS

[B] = 0?

 STOP

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 39

PROGRAM:

ADDR

E

SS

OPCO

DE

LABEL MNEM

ONICS

OPER

AND

COMMENTS

8000 MVI B,04 Initialize B reg with number

of comparisons (n-1) 8001

8002 LOOP 3 LXI H,8100 Initialize HL reg. to

8100H 8003

8004

8005 MVI C,04 Initialize C reg with no. of

comparisons(n-1) 8006

8007 LOOP2 MOV A,M Transfer first data to acc.

8008 INX H Increment HL reg. to point

next memory location

8009 CMP M Compare M & A

800A JC LOOP1 If A is less than M then go to

loop1 800B

800C

800D MOV D,M Transfer data from M to D reg

800E MOV M,A Transfer data from acc to M

800F DCX H Decrement HL pair

8010 MOV M,D Transfer data from D to M

8011 INX H Increment HL pair

8012 LOOP1 DCR C Decrement C reg

8013 JNZ LOOP2 If C is not zero go to loop2

8014

8015

8016 DCR B Decrement B reg

8017 JNZ LOOP3 If B is not Zero go to loop3

8018

8019

801A HLT Stop the program

OBSERVATION:

INPUT OUTPUT

MEMORY

LOCATION

DATA MEMORY

LOCATION

DATA

8100 8100

8101 8101

8102 8102

8103 8103

8104 8104

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 40

7(B). DESCENDING ORDER

AIM:

 To sort the given number in the descending order using 8085 microprocessor.

ALGORITHM:

 1. Get the numbers to be sorted from the memory locations.

 2. Compare the first two numbers and if the first number is smaller than second then I

interchange the number.

3. If the first number is larger, go to step 4

 4. Repeat steps 2 and 3 until the numbers are in required order

RESULT:

 Thus the descending order program is executed and thus the numbers are arranged

in descending order.

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 41

FLOWCHART:

 NO

 YES

[B]  04H

[HL]  [8100H]

[A]  [HL]

[HL  [HL] + 1

IS

[A] < [HL]?

[D] [HL]

[HL]  [A]

[HL]  [HL] - 1

[HL]  [D]

[HL]  [HL] + 1

[C]  [C] – 01 H

A

[C]  04H

 START

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 42

 NO

 YES

 NO

 YES

IS

[C] = 0?

A

[B]  [B]-1

IS

[B] = 0?

 STOP

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 43

PROGRAM:

ADDRE

SS

OPCO

DE

LABEL MNEM

ONICS

OPER

AND

COMMENTS

8000 MVI B,04 Initialize B reg with number

of comparisons (n-1) 8001

8002 LOOP 3 LXI H,8100 Initialize HL reg. to

8100H 8003

8004

8005 MVI C,04 Initialize C reg with no. of

comparisons(n-1) 8006

8007 LOOP2 MOV A,M Transfer first data to acc.

8008 INX H Increment HL reg. to point

next memory location

8009 CMP M Compare M & A

800A JNC LOOP1 If A is greater than M then go

to loop1 800B

800C

800D MOV D,M Transfer data from M to D reg

800E MOV M,A Transfer data from acc to M

800F DCX H Decrement HL pair

8010 MOV M,D Transfer data from D to M

8011 INX H Increment HL pair

8012 LOOP1 DCR C Decrement C reg

8013 JNZ LOOP2 If C is not zero go to loop2

8014

8015

8016 DCR B Decrement B reg

8017 JNZ LOOP3 If B is not Zero go to loop3

8018

8019

801A HLT Stop the program

OBSERVATION:

INPUT OUTPUT

MEMORY

LOCATION

DATA MEMORY

LOCATION

DATA

8100 8100

8101 8101

8102 8102

8103 8103

8104 8104

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 44

8(A). CODE CONVERSION –DECIMAL TO HEX

AIM:

 To convert a given decimal number to hexadecimal.

ALGORITHM:

1. Initialize the memory location to the data pointer.

2. Increment B register.

3. Increment accumulator by 1 and adjust it to decimal every time.

4. Compare the given decimal number with accumulator value.

5. When both matches, the equivalent hexadecimal value is in B register.

6. Store the resultant in memory location.

RESULT:

Thus an ALP program for conversion of decimal to hexadecimal was written and

executed.

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 45

FLOWCHART:

 NO

 YES

 START

HL 4500H

A 00

B 00H

A A +1

Decimal adjust

accumulator

B B+1

A B

 Is

A=M?

8101 A

Stop

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 46

PROGRAM:

ADDRE

SS

OPCO

DE

LABEL MNEM

ONICS

OPER

AND

COMMENTS

8000 LXI H,8100 Initialize HL reg. to

8100H 8001

8002

8003 MVI A,00 Initialize A register.

8004

8005 MVI B,00 Initialize B register..

8006

8007 LOOP INR B Increment B reg.

8008 ADI 01 Increment A reg

8009

800A DAA Decimal Adjust Accumulator

800B CMP M Compare M & A

800C JNZ LOOP If acc and given number are

not equal, then go to LOOP 800D

800E

800F MOV A,B Transfer B reg to acc.

8010 STA 8101 Store the result in a memory

location. 8011

8012

8013 HLT Stop the program

RESULT:

INPUT OUTPUT

ADDRESS DATA ADDRESS DATA

 8100 8101

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 47

8(B). CODE CONVERSION –HEXADECIMAL TO DECIMAL

AIM:

 To convert a given hexadecimal number to decimal.

ALGORITHM:

1. Initialize the memory location to the data pointer.

2. Increment B register.

3. Increment accumulator by 1 and adjust it to decimal every time.

4. Compare the given hexadecimal number with B register value.

5. When both match, the equivalent decimal value is in A register.

6. Store the resultant in memory location.

RESULT:

Thus an ALP program for conversion of hexadecimal to decimal was written and

executed.

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 48

FLOWCHART:

 NO

 YES

 Stop

 START

HL 8100H

A 00

B 00H

A A +1

Decimal adjust

accumulator

B B+1

D A, A B,

 Is

A=M?

8101 A, A C

8102 A

C 00H

C C+1

 Is there

carry?

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 49

PROGRAM:

ADDRE

SS

OPCO

DE

LABEL MNEM

ONICS

OPER

AND

COMMENTS

8000 LXI H,8100 Initialize HL reg. to

8100H 8001

8002

8003 MVI A,00 Initialize A register.

8004

8005 MVI B,00 Initialize B register.

8006

8007 MVI C,00 Initialize C register for carry.

8008

8009 LOOP INR B Increment B reg.

800A ADI 01 Increment A reg

800B

800C DAA Decimal Adjust Accumulator

800D JNC NEXT If there is no carry go to

NEXT. 800E

800F

8010 INR C Increment c register.

8011 NEXT MOV D,A Transfer A to D

8012 MOV A,B Transfer B to A

8013 CMP M Compare M & A

8014 MOV A,D Transfer D to A

8015 JNZ LOOP If acc and given number are

not equal, then go to LOOP 8016

8017

8018 STA 8101 Store the result in a memory

location. 8019

801A

801B MOV A,C Transfer C to A

801C STA 8102 Store the carry in another

memory location. 801D

801E

801F HLT Stop the program

RESULT:

INPUT OUTPUT

ADDRESS DATA ADDRESS DATA

8100 8101

8102

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 50

8(C). CODE CONVERSION – BCD TO HEX

AIM:

 To convert a given BCD number to hexadecimal.

ALGORITHM:

1. Initialize the memory location to the data pointer.

2. Get the BCD number from memory and separate LSB and MSB digits.

3. Multiply MSB No. of BCD to 0AH times and add the LSB to the resultant.

4. Store the resultant in memory location.

RESULT:

Thus an ALP program for conversion of BCD to HEX was written and executed.

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 51

FLOWCHART:

 NO

 YES

 START

B 0AH

HL 4500H

A [[HL]]

A A . 0FH

C A

A A . 0H

Rotate the Acc. four

Times.

A [[HL]]

D A

Clear Acc.

A A+B

Decrement D reg.

 Is

D=00H?

A A+C

A 4501H

Stop

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 52

PROGRAM:

ADDRESS OPCODE LABEL MNEMONICS OPERAND COMMENTS

4100 06 START MVI B, 0AH Move OAH to B

reg. 4101 00

4102 21 LXI H, 4500H Load the BCD no. in

Acc. through

memory pointer.
4103 00

4104 45

4105 7E MOV A, M

4106 E6 ANI 0FH Mask MSB of BCD

and store LSB in

reg. C
4107 0F

4108 4F MOV C, A

4109 7E MOV A, M Mask LSB of BCD

and store MSB in

Acc.
410A E6 ANI F0H

410B F0

410C 0F RRC Bring MSB to LSB

position and store in

reg. D.
410D 0F RRC

410E 0F RRC

410F 0F RRC

4110 57 MOV D, A

4111 AF XRA A Clear the Acc.

4112 80 L1 ADD D Add MSB of BCD

OAH times. 4113 05 DCR B

4114 C2 JNZ L1

4115 12

4116 41

4117 81 ADD C Add LSB of BCD to

sum.

4118 32 STA 4501H Store the HEX No.

in memory location

4501H.
4119 01

411A 45

411B 76 HLT Stop the program

execution.

OBSERVATION:

INPUT OUTPUT

ADDRESS DATA ADDRESS DATA

4500 4501

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 53

8(D). CODE CONVERSION –HEX TO BCD

AIM:

 To convert a given number hexadecimal to BCD

ALGORITHM:

1. Initialize the memory location to the data pointer.

2. Get the HEX number from memory.

3. Initialize the memory to store the output.

4. Subtract the given HEX No. by 64H(100BCD) .Repeat the subtraction

with the resultant & 64H and keep count until there is a carry.

5. Store the count, which is MSB of BCD in a memory location.

6. Subtract the 0AH(10BCD) from the result of the previous step. Repeat

the subtraction with the resultant & 0AH and keep count until there is

a carry.

7. Store the count, which is next significant bit of BCD in next memory

location.

8. Store the result of step 6, which is LSB of BCD in next memory

location.

OBSERVATION

INPUT OUTPUT

ADDRESS DATA ADDRESS DATA

4500

4600

4601

4602

RESULT:

Thus an ALP program for conversion of HEX to BCD was written

and executed.

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 54

FLOW CHART:

 NO

 YES

START

HL 4500H

A M

HL 4600H

B 64H

Call subroutine

HEXBCD

B 0AH

M A

Call subroutine

HEXBCD

Stop

HEXBCD

M FFH

M M+1

A A- B

Is

A=00H?

A A+B

Increment HL

reg. pair

Return to main

program

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 55

PROGRAM:

ADDRESS OPCODE LABEL MNEMONICS OPERAND COMMENTS

4100 21 START LXI H,4500 Load the BCD no. in

Acc. through memory

pointer.
4101 00

4102 45

4103 7E MOV A, M

4104 21 LXI H, 4600H Load the memory

address 4600H in HL

reg. pair
4105 00

4106 46

4107 06 MVI B, 64H Move data 64H to reg.

B. 4108 64

4109 CD CALL HEXBCD Call the subroutine

HEXBCD 410A 1A

410B 41

410C 06 MVI B, 0AH Move data 0AH to

reg. B 410D 0A

410E CD CALL HEXBCD Call the subroutine

HEXBCD 410F 1A

4110 46

4111 77 MOV M,A Move the content of

Acc. to memory.

4112 76 HLT Stop the program

execution.

SUBROUTINE:

ADDRESS OPCODE LABEL MNEMONICS OPERAND COMMENTS

411A 36 HEXBCD MVI M, FFH Move data FFH to

memory. 411B FF

411C 34 L1 INR M Increment the memory

pointer.

411D 90 SUB B Subtract the content of

B reg. from that of

Acc.

411E D2 JNC L1 If the content of Acc. is

zero go to the instruction

labeled L1.
411F 1C

4110 41

4111 80 ADD B Add the content of Acc.

with that of reg. B

4112 23 INX H Increment HL reg. Pair.

4113 C9 RET Return to main program.

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 56

 8(E) ASCII TO BINARY CONVERSION

 AIM:

 To convert ASCII number into its binary equivalent.

ALGORITHM:

1. Get the ASCII number in accumulator

2. Check whether the ASCII code is less than 40H.

3. If it is less than 40H subtract 30H from it to get its binary equivalent

(because ASCII codes 30 to 39 represent 0 to 9 in binary and 41 to 46

represent A to F)

4. Otherwise subtract 40H from the ASCII code and add 09H to it to get its

binary equivalent.

5. Store the result from the ACC in a memory location.

6. Stop the execution.

PROGRAM

MEMORY

ADDRESS

OPCODE LABEL MNEMONIC OPERAND COMMENTS

4100

4101

4102

4103

4104

4105

4106

4107

4108

4109

410A

410B

410C

410D

410E

410F

4111

4112

4113

4114

4115

3A

50

41

FE

40

DA

11

41

D6

40

C6

09

32

51

41

76

D6

30

C3

0C

41

LOOP1

LOOP

LDA

CPI

JC

SUI

ADI

STA

HLT

SUI

JMP

4150H

40H

LOOP

40

09

4151H

30

LOOP1

Get the ASCII code

in ACC

Compare the ASCII

code with 40H.

If the ASCII code is

less than 40H go to

the instruction

labeled LOOP.

Otherwise subtract

40H form the

ASCII code and

add 09H to it.

Store the binary

value in 4151H

(memory location)

Stop the execution

Subtract 30H from

the ASCII code

Go to the

instruction labeled

LOOP1.

CONCLUSION:

 Thus an ALP for converting an ASCII code to binary was written and executed.

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 57

FLOWCHART

 YES

 NO

OBSERVATION:

 INPUT OUTPUT

S. No ADDRESS DATA ADDRESS DATA

1. 4150H 31H 4151H 01H

2. 4150H 39H 4151H 09H

3. 4150H 42H 4151H 0BH

4. 4150H 46H 4151H OFH

EXERCISE:

Write an ALP to convert an ASCII code into binary using subroutine.

START

[A] (4150H)

IS

[A] < 40H

[A]  [A] – 40 H

[A]  [A] + 09 H

[A]  [A] – 30 H

[4151 H]  [A]

STOP

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 58

8(F) BINARY TO ASCII CONVERSION

PROBLEM STATEMENT:

 Write an ALP to convert a binary data to its equivalent ASCII code.

ALGORITHM:

Step 1: Get the binary data in Acc and Store it in another reg. (say B)

Step 2: Mask the upper nibble.

Step 3: Call the subroutine “ASCII” to get the ASCII code for lower nibble.

Step 4: Store the Acc contents in memory location.

Step 5: Get the binary data in Acc from Reg B.

Step 6: Mask the lower nibble and move the upper nibble to the lower nibble

position to get the ASCII code for upper nibble.

Step 7: Call the subroutine “ASCII” to get the ASCII code for upper nibble and

store the Acc contents in another memory location.

Step 8: Stop the execution.

Algorithm for subroutine ASCII:

Step 1: Compare the Acc contents with 0A H.

Step 2: If the Acc contents are lesser than 0A H then add 30H to it and return to

the main program.

Step 3: Otherwise add 37H to it and return to the main program.

SUBROUTINE PROGRAM

MEMORY

ADDRESS

OPCODE LABEL MNEMONIC OPERAND COMMENTS

4180

4181

4182

4183

4184

4185

4186

4187

4188

4189

FE

0A

DA

87

41

C6

07

C6

30

C9

ASCII

LOOP

CPI

JC

ADI

ADI

RET

0A

LOOP

07H

30H

Compare the Acc

contents with 0AH

If there is carry go

to instruction

labeled “LOOP”

Otherwise add 07H

to acc contents

Add 30H to Acc

contents

Return to the main

program

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 59

FLOWCHART

START

[A]  [4150H]

[B]  [A]

[A]  [A] X OFH

(Mask the upper nibble of [A]

[4160 H]  [A]

[A]  [B]

Mask the lower nibble of [A]

Shift the [A] left through carry 4 times

CALL ASCII

[4161 H]  [A]

STOP

Call subroutine ASCII

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 60

SUBROUTINE:

 YES

 NO

OBSERVATION:

 INPUT OUTPUT

S. No ADDRESS DATA ADDRESS DATA

1. 4150H 05H 4160H 35H

 4161H 30H

2. 4150H BEH 4160H 45H

 4161H 42H

CONCLUSION:

 Thus an ALP to convert binary data to its ASCII equivalent was written and

executed.

IS

[A]<OAH

ASCII

[A]  [A] +07H

[A]  [A]+30H

RETURN

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 61

PROGRAM

MEMORY

ADDRESS

OPCODE LABEL MNEMONIC OPERAND COMMENTS

4100

4101

4102

4103

4104

4105

4106

4107

4108

4109

410A

410B

410C

410D

410E

410F

4110

4111

4112

4113

4114

4115

4116

4117

4118

4119

3A

50

41

47

E6

OF

CD

32

60

41

78

E6

F0

07

07

07

07

CD

32

76

 LDA

MOV

ANI

CALL

STA

MOV

ANI

RLC

RLC

RLC

RLC

CALL

STA

HLT

4150H

B, A

OFH

ASCII

4160H

A, B

F0H

ASCII

4161H

Get the binary data in

Acc and store it in

Reg. B.

Mask the upper

nibble

Call the subroutine

ASCII to get the

ASCII code for the

lower nibble.

 Store the ASCII code

in 4160H

Get the binary data in

Acc.

Mask the lower

nibble

Rotate the contents

left through carry 4

times to move the

upper nibble to lower

nibble position

Call the subroutine

ASCII to get the

ASCII code for upper

nibble.

Store the ASCII code

in 4161H.

Stop the execution.

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 62

9(A) BCD ADDITION
AIM:

 To add two 8 bit BCD numbers stored at consecutive memory locations.

ALGORITHM:

1. Initialize memory pointer to data location.

2. Get the first number from memory in accumulator.

3. Get the second number and add it to the accumulator

4. Adjust the accumulator value to the proper BCD value using DAA instruction.

5. Store the answer at another memory location.

RESULT:

Thus the 8 bit BCD numbers stored at 4500 &4501 are added and the result stored at

4502 & 4503.

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 63

FLOW CHART:

 NO

 YES

START

[HL] 4500H

[A] [M]

[A] [A]+[M]

Decimal Adjust Accumulator

[HL] [HL]+1

STOP

[HL] [HL]+1

[M] [A]

[C] 00H

[M] [C]

[HL] [HL]+1

Is there a

 Carry ?

[C] [C]+1

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 64

PROGRAM:

ADDRESS OPCODE LABEL MNEMONICS OPERAND COMMENT

4100 START MVI C, 00 Clear C reg.

4103

4102 LXI H, 4500 Initialize HL reg. to

4500 4103

4104

4105 MOV A, M Transfer first data to

accumulator

4106 INX H Increment HL reg. to

point next memory

Location.

4107 ADD M Add first number to

acc. Content.

4108 DAA Decimal adjust

accumulator

4109 JNC L1 Jump to location if

result does not yield

carry.
410A

410B

410C INR C Increment C reg.

410D L1 INX H Increment HL reg. to

point next memory

Location.

410E MOV M, A Transfer the result from

acc. to memory.

410F INX H Increment HL reg. to

point next memory

Location.

4110 MOV M, C Move carry to memory

4111 HLT Stop the program

OBSERVATION:

INPUT OUTPUT

4500 4502

4501 4503

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 65

9(B). BCD SUBTRACTION

AIM:

 To Subtract two 8 bit BCD numbers stored at consecutive memory locations.

ALGORITHM:

1. Load the minuend and subtrahend in two registers.

2. Initialize Borrow register to 0.

3. Take the 100‟s complement of the subtrahend.

4. Add the result with the minuend which yields the result.

5. Adjust the accumulator value to the proper BCD value using DAA instruction.

If there is a carry ignore it.

6. If there is no carry, increment the carry register by 1

7. Store the content of the accumulator (result)and borrow register in the

specified memory location

RESULT:

Thus the 8 bit BCD numbers stored at 4500 &4501 are subtracted and the result stored at

4502 & 4503.

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 66

FLOW CHART:

 YES

 NO

START

HL HL+ 1

C M

A 99

[A] [A] – [C]

[A] [A]+1

Is there a

 Carry ?

[A] [A]+[B]

DAA

[D] 00H

HL 4500

B M

STOP

[D] [D]+1

[4502] A

[4503] D

[HL] [HL]+1

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 67

PROGRAM:

ADDRESS OPCODE LABEL MNEMONICS OPERAND COMMENT

4100 START MVI D, 00 Clear D reg.

4101

4102 LXI H, 4500 Initialize HL reg. to

4500 4103

4104

4105 MOV B, M Transfer first data to

accumulator

4106 INX H Increment HL reg. to

point next mem.

Location.

4107 MOV C, M Move second no. to B

reg.

4108 MVI A, 99 Move 99 to the

Accumulator 4109

410A SUB C Subtract [C] from acc.

Content.

410B INR A Increment A register

410C ADD B Add [B] with [A]

410D DAA Adjust Accumulator

value for Decimal digits

410E JC LOOP Jump on carry to loop

410F

4110

4111 INR D Increment D reg.

4112 LOOP INX H Increment HL register

pair

4113 MOV M , A Move the Acc.content to

the memory location

4114 INX H Increment HL reg. to

point next mem.

Location.

4115 MOV M, D Transfer D register

content to memory.

4116 HLT Stop the program

OBSERVATION:

INPUT OUTPUT

4500 4502

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 68

4501 4503

10. 2 X 2 MATRIX MULTIPLICATION

AIM:

 To perform the 2 x 2 matrix multiplication.

ALGORITHM:

1. Load the 2 input matrices in the separate address and initialize the HL and the DE

register pair with the starting address respectively.

2. Call a subroutine for performing the multiplication of one element of a matrix

with the other element of the other matrix.

3. Call a subroutine to store the resultant values in a separate matrix.

RESULT:

Thus the 2 x 2 matrix multiplication is performed and the result is stored at 4700,4701 ,

4702 & 4703.

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 69

FLOW CHART:

 YES

 NO

HL HL+1

DE DE+1; DE DE+1

Is

A=04H?

Increment HL

reg. pair

C 00H

HL 8500H

DE 8600H

HL HL+1

DE DE+1; DE DE+1

B A

A A+B

START

HL HL-1

DE DE-1;

B A

A

Call subroutine

MUL

Call subroutine

 STORE

A

Call subroutine

MUL

Call subroutine

MUL

A A+B

Call subroutine

 STORE

Call subroutine

MUL

A C

B

A

B
STOP

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 70

 YES

 NO

 NO

 YES

MUL

H H- 1

Is H=0 ?

[A] [[DE]]

D A

H M

[D] [D]+1

[H] 85; [D] 86

H H- 1

Is H=0 ?

RET

STORE

B 87

[A] [[BC]]

C C+ 1

RET

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 71

PROGRAM:

ADDRESS OPCOD

E

LABEL MNEM

ONICS

OPERAN

D

COMMENT

8100 MVI C, 00 Clear C reg.

8101

8102 LXI H, 8500 Initialize HL reg. to

4500 8103

8104

8105 LOOP2 LXI D, 8600 Load DE register pair

8106

8107

8108 CALL MUL Call subroutine MUL

8109

810A

810B MOV B,A Move A to B reg.

810C INX H Increment HL register pair .

810D INX D Increment DE register pair

810E INX D Increment DE register pair

810F CALL MUL Call subroutine MUL

8110

8111

8112 ADD B Add [B] with [A]

8113 CALL STORE Call subroutine STORE

8114

8115

8116 DCX H Decrement HL register pair

8117 DCX D Decrement DE register pair

8118 CALL MUL Call subroutine MUL

8119

811A

811B MOV B,A Transfer A reg content to B reg.

811C INX H Increment HL register pair

811D INX D Increment DE register pair

811E INX D Increment DE register pair

811F CALL MUL Call subroutine MUL

8120

8121

8122 ADD B Add A with B

8123 CALL STORE Call subroutine MUL

8124

8125

8126 MOV A,C Transfer C register content to Acc.

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 72

8127 CPI 04 Compare with 04 to check whether

all elements are multiplied. 8128

8129 JZ LOOP1 If completed, go to loop1

812A

812B

812C INX H Increment HL register Pair.

812D JMP LOOP2 Jump to LOOP2.

812E

812F

8130 LOOP1 HLT Stop the program.

8131 MUL LDAX D Load acc from the memory location

pointed by DE pair.

8132 MOV D,A Transfer acc content to D register.

8133 MOV H,M Transfer from memory to H register.

8134 DCR H Decrement H register.

8135 JZ LOOP3 If H is zero go to LOOP3.

8136

8137

8138 LOOP4 ADD D Add Acc with D reg

8139 DCR H Decrement H register.

813A JNZ LOOP4 If H is not zero go to LOOP4.

813B

813C

813D LOOP3 MVI H,85 Transfer 85 TO H register.

813E

813F MVI D,86 Transfer 86 to D register.

8140

8141 RET Return to main program.

8142 STORE MVI B,87 Transfer 87 to B register.

8143

8144 STAX B Load A from memory location

pointed by BC pair.

8145 INR C Increment C register.

8146 RET Return to main program.

OBSERVATION:

INPUT OUTPUT

4500 4600 4700

4501 4601 4701

4502 4602 4702

4503 4603 4703

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 73

EXPERIMENTS– 8086 PROGRAMS

11 . Simple Arithmetic Operation

I. 8-BIT ADDITION

PROBLEM STATEMENT:

 Write a program to add the given two 8-bit Nos. in 8086p.

ALGORITHM:

1. Get the addend and augend.

2. Initialize BL register for carry.

3. Add addend and augend.

4. If there is carry, increment DX register and go to step6 or else directly go to step6.

5. Initialize the memory pointer to output location

6. Store the result & carry in consecutive memory locations.

7. Stop the program execution.

CONCLUSION:

Thus addition of two 8-bit numbers is performed.

EXERCISE:

 Write an ALP using INTEL8086 mnemonics to add any two 32-bit numbers.

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 74

FLOWCHART:

 NO

YES

START

 AX Addend

BL 0000H

AX AX + Second No.

Is Carry flag

set?

DX DX+1

[Sum] AX

[Sum+2] CX

STOP

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 75

PROGRAM:

ADDRESS OPCOD

E

LABEL MNEM

ONICS

OPERAN

D

COMMENT

1000 MOV BL, 00 Clear C reg.

1001

 1002 Move 2000 address into AX

register. 1003 MOV AX,[2000]

1004

1005 Move 2002 address into CX

register. 1006

1007 MOV CX,[2002]

1008

1009

100A

100B ADD AX,CX Addition

100C

100D JNC LOOP

100E

100F INC BL Increment BL register pair

1010

1011 LOOP

1012

1013 Move result into 2102

1014

1015 MOV [2102],BL

1016

1017

1018

1019 HLT

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 76

II. 8-BIT SUBTRACTION

AIM:

 Write a program to subtract given two, 8 bit numbers.

ALGORITHM:

1. Get the minuend and subtrahend.

2. Compare the minuend and subtrahend. If minuend is lesser than subtrahend,

interchange the numbers and increment Dx register.

3. Subtract subtrahend from minuend.

4. Initialize the memory pointer to output memory location.

5. Store the results in two memory locations and DX register content in the next

memory location.

6. Stop the program execution.

CONCLUSION:

 Thus, subtraction of two 8-bit numbers was performed.

EXERCISE:

1. Write an ALP to subtract any two 32-bit numbers using INTEL8086 mnemonics.

2. Write an ALP to subtract any two 16-bit numbers.

(HINT: If subtrahend is greater than minuend, take 2‟s complement of the result and

indicate it by putting 01 in DL register.)

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 77

FLOWCHART:

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 78

PROGRAM:

ADDRESS OPCO

DE

LABEL MNEM

ONICS

OPERAN

D

COMMENT

1000 MOV BL, 00 Clear C reg.

1001

 1002 Move 2000 address into AX

register. 1003 MOV AX,[2000]

1004

1005 Move 2002 address into CX

register. 1006

1007 MOV CX,[2002]

1008

1009

100A

100B SUB AX,CX Sbbtraction

100C

100D JNC LOOP

100E

100F INC BL Increment BL register pair

1010

1011 NEG AX

1012

1013 LOOP MOV [2100],AX Move result into 2102

1014

1015

1016

1017 MOV [2102],BL Move result into 2102

1018

1019

101A

101B HLT

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 79

III. 8-BIT MULTIPLICATION

PROBLEM STATEMENT:

 Write a program to multiply two, 8-bit numbers using 8086.

ALGORITHM:

1. Get the multiplicand and multiplier

2. Multiply the multiplicand with multiplier using repeated addition method.

3. Initialize the memory pointer to output memory location.

4. Store the results in memory locations.

5. Stop the program execution.

CONCLUSION:

 Thus, multiplication of two, 8-bit numbers is performed using INTEL 8086

Mnemonics.

EXERCISE:

Write an ALP using INTEL8086 mnemonics to multiply two signed 16-bit

numbers.

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 80

FLOWCHART:

PROGRAM:

ADDRESS OPCO

DE

LABEL MNEM

ONICS

OPERAN

D

COMMENT

1000 MOV BL, 00 Clear C reg.

1001

 1002 Move 2000 address into AX

register. 1003 MOV DX,0000

1004

1005 Move 2002 address into CX

register. 1006

1007 MOV AX,[2000]

1008

1009

100A

100B MOV CX,[2002] Sbbtraction

100C

100D

100E

100F MUL CX Increment BL register pair

START

AX Multiplicand

CX, AX AX . Multiplier

[Product] AX

[Product+2] CX

STOP

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 81

1010

1011 JNC LOOP

1012

1013 INC BL Move result into 2102

1014

1015 LOOP MOV [2100],AX

1016

1017 Move result into 2102

1018

1019 MOV [2102],DX

101A

101B

101C

101D MOV [2104],BL

101E

101F

1020

1021 HLT

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 82

IV. 16-BIT DIVISION

PROBLEM STATEMENT:

 Write a program to Divide two, 8-bit numbers using 8086.

ALGORITHM:

1. Get the dividend and divisor.

2. Divide dividend by divisor.

3. Initialize the memory pointer to output memory location.

4. Store the results in memory locations.

5. Stop the program execution.

CONCLUSION:

 Thus, division of two, unsigned 8-bit numbers is performed using INTEL 8086

Mnemonics.

EXERCISE:

Write an ALP using INTEL8086 mnemonics to divide two signed 16-bit numbers.

FLOWCHART:

START

AX Dividend

DX 0000H

AX / Divisor

AX Quotient

DX Remainder

[Product] AX

[Product+2] DX

STOP

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 83

PROGRAM

ADDRESS OPCO

DE

LABEL MNEM

ONICS

OPERAND COMMENT

1000 MOV DX,0000 Clear C reg.

1001

 1002 Move 2000 address into AX

register. 1003

1004 MOV AX,0008 H

1005 Move 2002 address into CX

register. 1006

1007

1008 MOV CX,0004 H

1009

100A

100B

100C DIV CX

100D

100E MOV [2100],AX

100F Increment BL register pair

1010

1011

1012 MOV [2102],DX

1013 Move result into 2102

1014

1015

1016 HLT

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 84

10.3 X 3 MATRIX ADDITION

AIM:

 To perform the 3 x 3 matrix addition.

ALGORITHM:

1. Load the 3 input matrices in the separate address and initialize the AX and the BX

register pair with the starting address respectively.

2. Call a subroutine for performing the addition of one element of a matrix with the

other element of the other matrix.

3. Call a subroutine to store the resultant values in a separate matrix.

RESULT:

Thus the 3 x 3 matrix multiplication is performed and the result is stored at memory

locations.

PROGRAM

ADDRESS OPCO

DE

LABEL MNEM

ONICS

OPERAND COMMENT

1000 MOV CL,09 Clear C reg.

1001

 1002 Move 2000 address into AX

register. 1003 MOV SI,1500

1004

1005 Move 2002 address into CX

register. 1006

1007 MOV DI,2500

1008

1009

100A

100B LOOP MOV AL,[SI]

100C

100D MOV BL, [DI]

100E

100F ADD AL ,BL Increment BL register pair

1010

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 85

1011 MOV [DI], AL

1012

1013 INC SI Move result into 2102

1014 INC DI

1015 DEC CL

1016 HLT

1017 JNZ LOOP

1018

1019 HLT

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 86

12 . BIOS/DOS CALLS – DISPLAY

AIM:

 To display a message on the CRT screen of a microcomputer using DOS calls.

ALGORITHM:

1. Initialize the data segment and the message to be displayed.

2. Set function value for display.

3. Point to the message and run the interrupt to display the message in the CRT.

PROGRAM:

ASSUME CS: CODE, DS: DATA

DATA SEGMENT

MSG DB 0DH, 0AH, “GOOD MORNING” , ODH, OAH, “$”

DATA ENDS

CODE SEGMENT

START: MOV AX, DATA

 MOV DS, AX

 MOV AH, 09H

 MOV DX, OFFSET MSG

 INT 21H

 MOV AH, 4CH

 INT 21H

CODE ENDS

END START

RESULT:

A message is displayed on the CRT screen of a microcomputer using DOS calls

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 87

13. BIOS/DOS CALLS – FILE MANIPULATION

AIM:

To open a file using DOS calls.

ALGORITHM:

1. Initialize the data segment, file name and the message to be displayed.

2. Set the file attribute to create a file using a DOS call.

3. If the file is unable t o create a file display the message

PROGRAM:

ASSUME CS: CODE, DS: DATA

DATA SEGMENT

FILENAME DB “SAMPLE.DAT”, “$”

MSG DB 0DH, 0AH, “FILE NOT CREATED”, ODH, OAH, “$”

DATA ENDS

CODE SEGMENT

START: MOV AX, DATA

 MOV DS, AX

 MOV DX, OFFSET FILENAME

 MOV CX, 00H

 MOV AH, 3CH

 INT 21H

 JNC LOOP1

 MOV AX, DATA

 MOV DS, AX

 MOV DX, OFFSET MSG

 MOV AH, 09H

 INT 21H

LOOP1 MOV AH, 4CH

 INT 21H

CODE ENDS

END START

RESULT : A file is opened using DOS calls.

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 88

14. BIOS/DOS CALLS – DISK INFORMATION

AIM:

 To display the disk information.

ALGORITHM:

1. Initialize the data segment and the message to be displayed.

2. Set function value for disk information.

3. Point to the message and run the interrupt to display the message in the CRT.

PROGRAM:

ASSUME CS: CODE, DS: DATA

DATA SEGMENT

MSG DB 0DH, 0AH, “GOOD MORNING” , ODH, OAH, “$”

DATA ENDS

CODE SEGMENT

START: MOV AX, DATA

 MOV DS, AX

 MOV AH, 36H

 MOV DX, OFFSET MSG

 INT 21H

 MOV AH, 4CH

 INT 21H

CODE ENDS

END START

RESULT:

 The disk information is displayed.

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 89

15 STRING MANIPULATION

I. 8086 STRING MANIPULATION – SEARCH A WORD

AIM:

To search a word from a string.

ALGORITHM:

1. Load the source and destination index register with starting and the ending

address respectively.

2. Initialize the counter with the total number of words to be copied.

3. Clear the direction flag for auto incrementing mode of transfer.

4. Use the string manipulation instruction SCASW with the prefix REP to

search a word from string.

5. If a match is found (z=1), display 01 in destination address. Otherwise,

display 00 in destination address.

RESULT:

 A word is searched and the count of number of appearances is displayed.

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 90

PROGRAM:

ASSUME CS: CODE, DS: DATA

DATA SEGMENT

LIST DW 53H, 15H, 19H, 02H

DEST EQU 3000H

COUNT EQU 05H

DATA ENDS

CODE SEGMENT

START: MOV AX, DATA

 MOV DS, AX

 MOV AX, 15H

 MOV SI, OFFSET LIST

 MOV DI, DEST

 MOV CX, COUNT

 MOV AX, 00

 CLD

REP SCASW

 JZ LOOP

 MOV AX, 01

LOOP MOV [DI], AX

 MOV AH, 4CH

 INT 21H

CODE ENDS

END START

INPUT:

LIST: 53H, 15H, 19H, 02H

OUTPUT: 3000 01

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 91

II.8086 STRING MANIPULATION –FIND AND REPLACE A WORD

AIM:

To find and replace a word from a string.

ALGORITHM:

1. Load the source and destination index register with starting and the

ending address respectively.

2. Initialize the counter with the total number of words to be copied.

3. Clear the direction flag for auto incrementing mode of transfer.

4. Use the string manipulation instruction SCASW with the prefix REP

to search a word from string.

5. If a match is found (z=1), replace the old word with the current word

in destination address. Otherwise, stop.

RESULT:

A word is found and replaced from a string.

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 92

PROGRAM:

ASSUME CS: CODE, DS: DATA

DATA SEGMENT

LIST DW 53H, 15H, 19H, 02H

REPLACE EQU 30H

COUNT EQU 05H

DATA ENDS

CODE SEGMENT

START: MOV AX, DATA

 MOV DS, AX

 MOV AX, 15H

 MOV SI, OFFSET LIST

 MOV CX, COUNT

 MOV AX, 00

 CLD

REP SCASW

 JNZ LOOP

 MOV DI, LABEL LIST

 MOV [DI], REPLACE

LOOP MOV AH, 4CH

 INT 21H

CODE ENDS

END START

INPUT:

LIST: 53H, 15H, 19H, 02H

OUTPUT:

LIST: 53H, 30H, 19H, 02H

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 93

III. 8086 STRING MANIPULATION – COPY A STRING

AIM:

To copy a string of data words from one location to the other.

ALGORITHM:

6. Load the source and destination index register with starting and the ending

address respectively.

7. Initialize the counter with the total number of words to be copied.

8. Clear the direction flag for auto incrementing mode of transfer.

9. Use the string manipulation instruction MOVSW with the prefix REP to

copy a string from source to destination.

RESULT:

 A string of data words is copied from one location to other.

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 94

PROGRAM:

ASSUME CS: CODE, DS: DATA

DATA SEGMENT

SOURCE EQU 2000H

DEST EQU 3000H

COUNT EQU 05H

DATA ENDS

CODE SEGMENT

START: MOV AX, DATA

 MOV DS, AX

 MOV ES, AX

 MOV SI, SOURCE

 MOV DI, DEST

 MOV CX, COUNT

 CLD

REP MOVSW

 MOV AH, 4CH

 INT 21H

CODE ENDS

END START

INPUT: OUTPUT:

2000 48 3000 48

2001 84 3001 84

2002 67 3002 67

2003 90 3003 90

2004 21 3004 21

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 95

IV.8086 STRING MANIPULATION – SORTING

AIM:

To sort a group of data bytes.

ALGORITHM:

 Place all the elements of an array named list (in the consecutive

memory locations).

 Initialize two counters DX & CX with the total number of elements in

the array.

 Do the following steps until the counter B reaches 0.

o Load the first element in the accumulator

o Do the following steps until the counter C reaches 0.

1. Compare the accumulator content with the next element

present in the next memory location. If the accumulator

content is smaller go to next step; otherwise, swap the

content of accumulator with the content of memory

location.

2. Increment the memory pointer to point to the next element.

3. Decrement the counter C by 1.

 Stop the execution.

RESULT:

 A group of data bytes are arranged in ascending order.

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 96

PROGRAM:

ASSUME CS: CODE, DS: DATA

DATA SEGMENT

LIST DW 53H, 25H, 19H, 02H

COUNT EQU 04H

DATA ENDS

CODE SEGMENT

START: MOV AX, DATA

 MOV DS, AX

 MOV DX, COUNT-1

LOOP2: MOV CX, DX

 MOV SI, OFFSET LIST

AGAIN: MOV AX, [SI]

 CMP AX, [SI+2]

 JC LOOP1

 XCHG [SI +2], AX

 XCHG [SI], AX

LOOP1: ADD SI, 02

 LOOP AGAIN

 DEC DX

 JNZ LOOP2

 MOV AH, 4CH

 INT 21H

CODE ENDS

END START

INPUT:

LIST: 53H, 25H, 19H, 02H

OUTPUT:

 LIST: 02H, 19H, 25H, 53H

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 97

16. INTERFACING 8255 WITH 8085

AIM:

 To interface programmable peripheral interface 8255 with 8085 and study its

characteristics in mode0,mode1 and BSR mode.

APPARATUS REQUIRED:

 8085 p kit, 8255Interface board, DC regulated power supply, VXT parallel bus

 I/O MODES:

 Control Word:

MODE 0 – SIMPLE I/O MODE:

 This mode provides simple I/O operations for each of the three ports and

is suitable for synchronous data transfer. In this mode all the ports can be configured

either as input or output port.

 Let us initialize port A as input port and port B as output port

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 98

PROGRAM:

ADDRESS OPCODES LABEL MNEMONICS OPERAND COMMENTS

4100 START: MVI A, 90 Initialize port A

as Input and Port

B as output.
4101

4102 OUT C6 Send Mode

Control word 4103

4104 IN C0 Read from Port A

4105

4106 OUT C2 Display the data

in port B 4107

4108 STA 4200 Store the data

read from Port A

in 4200
4109

410A

410B HLT Stop the

program.

MODE1 STROBED I/O MODE:

 In this mode, port A and port B are used as data ports and port C is used as control

signals for strobed I/O data transfer.

 Let us initialize port A as input port in mode1

MAIN PROGRAM:

ADDRESS OPCODES LABEL MNEMONICS OPERAND COMMENTS

4100 START: MVI A, B4 Initialize port A

as Input port in

mode 1.
4101

4102 OUT C6 Send Mode

Control word 4103

4104 MVI A,09 Set the PC4 bit

for INTE A

4105

4106 OUT C6 Display the data

in port B

4107

 EI

4108 MVI A,08 Enable RST5.5

4109

410A SIM

 EI

410B HLT Stop the

program.

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 99

ISR (Interrupt Service Routine)

ADDRESS OPCODES LABEL MNEMONICS OPERAND COMMENTS

4200 START: IN C0 Read from port A

4201

4202 STA 4500 Store in 4500.

4203

4204

4205 HLT Stop the

program.

Sub program:

ADDRESS OPCODES LABEL MNEMONICS OPERAND COMMENTS

405E JMP 4200 Go to 4200

405F

4060

BSR MODE (Bit Set Reset mode)

 Any lines of port c can be set or reset individually without affecting other lines

using this mode. Let us set PC0 and PC3 bits using this mode.

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 100

PROGRAM:

ADDRESS OPCODES LABEL MNEMONICS OPERAND COMMENTS

4100 START: MVI A, 01 Set PC0

4101

4102 OUT C6 Send Mode

Control word 4103

4104 MVI A,07 Set PC3

4105

4106 OUT C6 Send Mode

Control word 4107

4109 HLT Stop the

program.

RESULT:

 Thus 8255 is interfaced and its characteristics in mode0,mode1 and BSR mode is

studied.

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 101

17. INTERFACING 8253 TIMER WITH 8085

Interfacing 8253 Programmable Interval Timer with 8085 p

AIM:

To interface 8253 Interface board to 8085 p and verify the operation of 8253in six

different modes.

APPARATUS REQUIRED:

8085 p kit, 8253 Interface board, DC regulated power supply, VXT parallel bus,

CRO.

Mode 0 – Interrupt on terminal count:

The output will be initially low after mode set operations. After loading the counter,

the output will be remaining low while counting and on terminal count; the output

will become high, until reloaded again.

Let us set the channel 0 in mode 0. Connect the CLK 0 to the debounce circuit by

changing the jumper J3 and then execute the following program.

Program:

Address Opcodes Label Mnemonic Operands Comments

4100 START: MVI A, 30 Channel 0 in mode 0

4102 OUT CE Send Mode Control word

4104 MVI A, 05 LSB of count

4106 OUT C8 Write count to register

4108 MVI A, 00 MSB of count

410A OUT C8 Write count to register

410C HLT

It is observed in CRO that the output of Channel 0 is initially LOW. After giving six

clock pulses, the output goes HIGH.

Mode 1 – Programmable ONE-SHOT:

After loading the counter, the output will remain low following the rising edge of

the gate input. The output will go high on the terminal count. It is retriggerable; hence

the output will remain low for the full count, after any rising edge of the gate input.

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 102

Example:

The following program initializes channel 0 of 8253 in Mode 1 and also initiates

triggering of Gate 0. OUT 0 goes low, as clock pulse after triggering the goes back to

high level after 5 clock pulses. Execute the program, give clock pulses through the

debounce logic and verify using CRO.

Address Opcodes Label Mnemonic Operands Comments

4100 START: MVI A, 32 Channel 0 in mode 1

4102 OUT CE Send Mode Control word

4104 MVI A, 05 LSB of count

4106 OUT C8 Write count to register

4108 MVI A, 00 MSB of count

410A OUT C8 Write count to register

410C OUT D0 Trigger Gate0

4100 HLT

Mode 2 – Rate Generator:

It is a simple divide by N counter. The output will be low for one period of the input

clock. The period from one output pulse to the next equals the number of input

counts in the count register. If the count register is reloaded between output pulses

the present period will not be affected but the subsequent period will reflect the new

value.

Example:

Using Mode 2, Let us divide the clock present at Channel 1 by 10. Connect the

CLK1 to PCLK.

Address Opcodes Label Mnemonic Operands Comments

4100 3E 74 START: MVI A, 74 Channel 1 in mode 2

4102 D3 CE OUT CE Send Mode Control word

4104 3E 0A MVI A, 0A LSB of count

4106 D3 CA OUT CA Write count to register

4108 3E 00 MVI A, 00 MSB of count

410A D3 CA OUT CA Write count to register

410C 76 HLT

In CRO observe simultaneously the input clock to channel 1 and the output at Out1.

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 103

Mode 3 Square wave generator:

It is similar to Mode 2 except that the output will remain high until one half of count

and go low for the other half for even number count. If the count is odd, the output

will be high for (count + 1)/2 counts. This mode is used of generating Baud rate for

8251A (USART).

Example:

We utilize Mode 0 to generate a square wave of frequency 150 KHz at channel 0.

Address Opcodes Label Mnemonic Operands Comments

4100 3E 36 START: MVI A, 36 Channel 0 in mode 3

4102 D3 CE OUT CE Send Mode Control word

4104 3E 0A MVI A, 0A LSB of count

4106 D3 C8 OUT C8 Write count to register

4108 3E 00 MVI A, 00 MSB of count

410A D3 C8 OUT C8 Write count to register

410C 76 HLT

Set the jumper, so that the clock 0 of 8253 is given a square wave of frequency 1.5 MHz.

This program divides this PCLK by 10 and thus the output at channel 0 is 150 KHz.

 Vary the frequency by varying the count. Here the maximum count is FFFF H.

So, the square wave will remain high for 7FFF H counts and remain low for 7FFF H

counts. Thus with the input clock frequency of 1.5 MHz, which corresponds to a period

of 0.067 microseconds, the resulting square wave has an ON time of 0.02184

microseconds and an OFF time of 0.02184 microseconds.

 To increase the time period of square wave, set the jumpers such that CLK2 of

8253 is connected to OUT 0. Using the above-mentioned program, output a square wave

of frequency 150 KHz at channel 0. Now this is the clock to channel 2.

Mode 4: Software Triggered Strobe:

 The output is high after mode is set and also during counting. On terminal count,

the output will go low for one clock period and becomes high again. This mode can be

used for interrupt generation.

 The following program initializes channel 2 of 8253 in mode 4.

Example:

 Connect OUT 0 to CLK 2 (jumper J1). Execute the program and observe the

output OUT 2. Counter 2 will generate a pulse after 1 second.

Address Opcodes Label Mnemonic Operands Comments

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 104

4100 START: MVI A, 36 Channel 0 in mode 0

4102 OUT CE Send Mode Control word

4104 MVI A, 0A LSB of count

4106 OUT C8 Write count to register

4108 MVI A, 00 MSB of count

410A OUT C8 Write count to register

410C MVI A, B8 Channel 2 in Mode 4

410E OUT CE Send Mode control Word

4110 MVI A, 98 LSB of Count

4112 OUT CC Write Count to register

4114 MVI A, 3A MSB of Count

4116 OUT CC Write Count to register

4118 HLT

Mode 5 Hardware triggered strobe:

 Counter starts counting after rising edge of trigger input and output goes low for

one clock period when terminal count is reached. The counter is retriggerable.

Example:

The program that follows initializes channel 0 in mode 5 and also triggers Gate 0.

Connect CLK 0 to debounce circuit.

 Execute the program. After giving Six clock pulses, you can see using CRO, the

initially HIGH output goes LOW. The output (OUT 0 pin) goes high on the next clock

pulse.

Address Opcodes Label Mnemonic Operands Comments

4100 START: MVI A, 1A Channel 0 in mode 5

4102 OUT CE Send Mode Control word

4104 MVI A, 05 LSB of count

4106 OUT C8 Write count to register

4108 MVI A, 00 MSB of count

410A OUT D0 Trigger Gate 0

410C HLT

Result:

 Thus the 8253 has been interfaced to 8085 p and six different modes of 8253

have been studied.

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 105

18. INTERFACING 8279 WITH 8085

Aim:

 To interface 8279 programmable Keyboard/Display Controller to 8085 p

Apparatus Required:

 8085 p , 8279 Interface board , Power supply , vxt parallel bus

Theory:

 The Intel 8279 is responsible for debouncing of the keys, coding of the keypad

matrix and refreshing of the display elements in a microprocessor based development

system. Its main features are :

 Simultaneous keyboard and display operation.

 3 Input modes such as scanned keyboard mode, scanned sensor mode and

strobed input entry mode.

 2 output modes such as 8 or 16 character multiplexed displays , right entry or

left entry display formats.

 Clock prescaler

 Programmable scan timing

 2 key lock_ out or N_key roll_over with contact debounce

 Auto increment facility for easy programming.

Program 1:

 To initialize 8279 and to display the character “A” in the first digit of the

display.

MVI A,00 ; mode and display set

OUT C2

MVI A,CC ; clear display

OUT C2

MVI A,90 ; write display RAM

OUT C2

MVI A,88 ; Display „A‟

OUT C0

MVI A,FF ; blank the rest of the display

OUT C0

OUT C0

OUT C0

OUT C0

OUT C0

HLT

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 106

Program 2:

 To read a key and store the key code in memory location 4200H

IN C2 ; FIFIstatus

ANI 07 ; check for a key closure

JZ 4150

MVI A,40 ; set 8279 for a read

OUT C2 ; of FIFO RAM

IN C0

STA 4200 ; keycode at 4200

HLT

Procedure:

 Enter the above two programs from the address specified and execute it.

The display is “A” in the first digit and the rest are left blank for program-1.

If a key closure is encountered , read the data from FIFO RAM , and store this data(key

code) in memory location 4200H.

Exercise:

 Program 8279 to display the rolling message „HELP US‟ in the display.

Result:

 Thus the 8279 was interfaced to 8085 p to interface Hex keyboard and 7-

Segment Display.

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 107

19. INTERFACING 8251 WITH 8085

 Communication Between two 8085 Microprocessors

Aim:

 To transmit and receive a Character between two 8085 ps using 8251A

Apparatus Required:

 8085 p Kit – 2 No.s , RS 232C cable , Power supply – 2 No.s

Theory:

 The program first initializes the 8253 to give an output clock frequency of

150KHz at channel 0 which will give a 9600 baud rate of 8251A. Then the 8251A is

initialized to a dummy mode command. The internal reset to 8251A is then provided,

since the 8251A is in the command mode now. Then 8251A is initialized as follows.

 Initializing 8251A using the Mode instruction to the following.

 8 bit data

 No parity

 16x Baud rate factor

 1 stop bit

 B2 , B1 = 1 , 0

 L2 , L1 = 1 ,1

 PEN = 0

 EP = 0

 S2 , S1 = 0 , 1

 gives a Mode command word of 4E.

 When 8251A is initialized as follows using the command instruction,

 Reset Error flags,

 Enable transmission and reception,

 Make RTS and DTR active low.

 EH = 0 SBRK = 0

 IR = 0 RxE = 1

 RTS = 1 DTR = 1

 ER = 1 TxEN = 1

 We get a command word of 37

The program after initializing , will read the status register and check for TxEMPTY. If

the transmitter buffer is empty then it will send 41 to the serial port and then check for a

character in the receive buffer. If some character is present then, it is received and stored

at location 4200H.

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 108

Program:

 ORG 4100H

 UATCNT EQU 05

 UATDAT EQU 04

 TMRCNT EQU 0B

 TMRCH0 EQU 08

MVI A,36 ;Initialization of 8253

 OUT TMRCNT

 MVI A,0A

 OUT TMRCH0

 XRA A

 OUT TMRCH0

 XRA A ;Resetting the 8251A

 OUT UATCNT

 MVI A,40

 OUT UATCNT

 MVI A,4E ;Initialization of 8251A

 OUT UATCNT

 MVI A,37

 OUT UATCNT

Program for Transmitter:

LOOP: IN UATCNT ;Check 8251As TxEMPTY

ANI 04 ;and then send the data 41

JZ LOOP

 MVI A,41

 OUT UATDAT

Program for Receiver:

 LOOP1: IN UATCNT ;Check 8251As RxRDY and then

 ANI 2 ;get the data and store at 4200

 JZ LOOP1

 IN UATDAT

 STA 4200

 HLT

Procedure:

 Feed the above program in two 8085 ps (One acts as Transmitter and the other

acts as Receiver). Execute the two programs simultaneously. Check the Receiver at

location 4200H. It „s content will be 41.

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 109

Exercise:

 Write a program to transmit a block of data from transmitter and receive them at

the receiver.

Result:

 Thus the communication between two microprocessors has been established.

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 110

20. 0800 DAC Interfacing to 8085p

Aim:

 To interface 0800 DAC to 8085 p and generate various waveforms.

Apparatus Required:

 8085 p kit , DAC interface board , VXT parallel bus , power supply , CRO

Theory:

 DAC 0800 is a monolithic, high speed, current output Digital to Analog

converter. The DAC interface board consists of two 8- bit DAC 0800. Its output voltage

variation is between –5V and +5V. The output voltage varies in steps of 10/256 = 0.04

(approx). The digital data input and the corresponding output voltages are presented in

the following table.

 Input data in Hex Output Voltage

00 -5.00

01 – 4.96

02 – 4.92

.

.

7F 0.00

.

.

FD 4.92

FE 4.96

FF 5.00

Address for DAC1 is C0,

 and for DAC2 is C8

Program:

 To generate square-wave at the DAC2 ouput.

 ORG 4100H

 START: MVI A,00 ; load minimum data

 OUT C8H

 CALL DELAY ; delay subroutine

 MVI A,FF ; load maximum data

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 111

 OUT C8H

CALL DELAY ; delay subroutine

 JMP START

 DELAY: MVI B,05

 L1: MVI C,FF

 L2: DCR C

 JNZ L2

 DCR B

 JNZ L1

 RET

Procedure:

 Execute the above program and using CRO, verify that the waveform at

the DAC2 output is a square wave. Modify the frequency of the square wave , by varying

the time delay.

 To create a saw-tooth wave at the output of DAC1

 ORG 4200H

 START: MVI A,00

 L1: OUT C0H

 INR A

 JNZ L1

 JMP START

Exercise:

1) Write a program to generate triangular waveform at DAC2 output.

2) Write a program to generate sine-wave at DAC1 ouput.

Result:

 Thus the DAC 0800 interface board has been interfaced to 8085p and various

waveforms have been generated.

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 112

21. Interfacing 16-channel 0809 8 bit ADC interface board to 8085 p

Aim:

 To interface 16-channel 0809 8 bit ADC interface board to 8085 p

Apparatus Required:

 8085 p kit , 16-channel 0809 8 bit ADC interface board , VXT parallel bus ,

power supply.

Theory:

 ADC 0809 is a monolithic CMOS device , with an 8 bit analog-to-digital

converter , 8 channel multiplexer and microprocessor compatible control logic.In the

interface board the channel select address pins ADD A , ADD B , and ADD C are

connected to data bus through a latch 74LS174. The buffer 74LS244 which transfers the

converted data outputs to data bus is selected when the address is C0h. The I/O address

for the latch 74LS174 which latches the data bus to ADD A , ADD B, ADD C and ALE 1

and ALE 2 is C8H. The flip flop 74LS74 which transfers the D0 line status to the SOC

pin of ADC 0809 is selected when the address is D0H. The EOC output of ADC1 and

ADC2 is transferred to D0 line by means of two tristate buffers. The EOC 1 is selected

when the address is D8H and the EOC 2 is selected when the address is E0H.

Program:

 ORG 4100H

 START: MVI A,10 ;Select Channel 0

 OUT C8H

 MVI A,18

 OUT C8H

 HLT

Procedure:

 The above program selects Channel 0. Execute the program. Start the analog to

digital conversion process by pressing the SOC switch. ADC 0809 converts the analog

input at channel 0 to a digital value and 74LS374 latches the data to glow the LEDs

accordingly. Thus you can see the converted data output.

 ORG 4100H

 START: MVI A,10 ;Select Channel 0

 OUT C8H

 MVI A,18H

 OUT C8H

 MVI A,01

 OUT D0H

 XRA A

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 113

 XRA A

 XRA A

 MVI A,00 ;SOC pulse

 OUT D0H

 HLT

Procedure:

 The above program initiates the analog to digital conversion process by means of

software. Execute the program, which converts the anolog input at Channel 0 and

displays the output with the LEDs.

Exercise:

 Write a program to convert the analog input to digital output by checking EOC

pin of ADC 0809 , whether the conversion is over or not.

conclusion:

 Thus the ADC interfacing board has been interfaced to 8085 p.

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 114

22. TRAFFIC LIGHT CONTROLLER

PROBLEM STATEMENT:

 Write an ALP to control the traffic light signal using the microprocessor

8085.

THEORY:

 A simple contraption of a traffic control system is shown in the figure

where the signaling lights are simulated by the blinking or ON – OFF control of LED‟s.

The signaling lights for the pedestrian crossing are simulated by the ON – OFF control of

dual colour LED‟s.

 A model of a four road – four lane junction, the board has green, yellow

and red LED‟s which are the green, orange and red signals of an actual systems. 12 LEDs

are used on the board. In addition 8 dual colour LEDs are used which can be made to

change either to red or to green.

 The control of the LEDs is as follows:

 The board communicates with the microprocessor trainer by means of a 26

core cable which is connected to the output pins of any parallel port of trainer.

 The outputs (i.e. port) are the inputs to buffers 7406 whose

outputs drive the LEDs. The buffered output applied to the cathode of the

LEDs decides whether it is ON or OFF.

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 115

 NORTH
 DL14 STOP DL15

 PB7 PB7

 Go L18 PA4

 Yo L19 PA6

 Ro L20 PA7

 PB1 PA5 PA1

 PB4 DL8 L11 L12 L13

 Go Yo Ro

 S S

 T T

WEST O 0 EAST

 P P

 PB4 DL7 PB3 L6 oR Ro Yo Go DL22

 PB2 L5 oY L27 L26 L25 PB6

 PB0 L4 oG P PA2 PA0

 DL1 DL28

PB5 STOP PB5

 SOUTH

( Dual Colour LED)

I/O Decoding:

Address selection

OF H Control word Register

OC H Port A

OD H Port B

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 116

FLOW CHART

 NO

 YES

START

Initialize the port of

8255

Move the data OC h to

Reg. C

Send data to port A to

activate the LED‟s

Send data to port B to

activate the LED‟s

connected to it

CALL DELAY

Decrement the count

in Reg. C

IS

COUNT = 0?

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 117

FLOW CHART

 NO

 YES

 YES

 NO

 YES

DELAY

Move the contents of Reg. BC

to stack pointer

Move the contents 05 H to Reg. C

Move the Contents FFFF H to DE

Reg. pair

Decrement the content of DE

Reg. pair

IS

[DE] = 0000 H?

Decrement the content of Reg. C

IS

[C] =00 H?

Move back the contents of stack pointer

to Reg. Pair BC

RETURN

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 118

PROGRAM

MEMORY

ADDRESS

OPCODE LABEL MNEMONIC OPERAND COMMENTS

4100

4101

4102

4103

4104

4105

4106

4107

4108

4109

410A

410B

410C

410D

410E

410F

4110

4111

4112

4113

4114

4115

4116

4117

4118

4119

411A

21

00

45

0E

0C

7E

D3

0F

23

7E

D3

0C

23

7E

D3

0D

CD

1B

41

23

0D

C2

09

41

C3

00

41

START

LOOP1

LXI

MVI

MOV

OUT

INX

MOV

OUT

INX

MOV

OUT

CALL

DELAY

DCR

JNZ

JMP

H, 4500 H

C, OC H

A, M

OF H

H

A, M

OC H

H

A, M

OD H

DELAY

H

C

LOOP 1

START

Initialize the

HLReg. Pair to

4500 H

Initialize the count

Reg. C to OC H

Initialize the ports

of 8255.

Send the data to

switch ON / OFF

The LED‟s through

port A.

Switch ON / OFF

the LED‟s through

port B

Call the subroutine

delay

Get the next data

and decrement the

count.

If the count is not

zero go to

instruction labeled

“LOOP 1”

Jump

unconditionally to

the instruction

labeled “START”

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 119

SUBROTINE

411B

411C

411D

411E

411F

4120

4121

4122

4123

4124

4125

4126

4127

4128

4129

412A

412B

412C

C5

0E

05

11

FF

FF

1B

7A

B3

C2

21

41

0D

C2

1E

41

C1

C9

DELAY

LOOP3

LOOP2

PUSH

MVI

LXI

DCX

MOV

ORA

JNZ

DCR

JNZ

POP

RET

B

C, 05

D, FFFF

D

A, D

E

LOOP 2

C

LOOP 3

B

Save the contents

of BC Reg. Pair to

stack pointer.

Initialize Reg. C to

hold data 05 H.

Get the data FFFF

H in DE Reg. Pair.

Decrement the

content of DE Reg.

Pair

Check whether the

contents of DE

Reg. Pair is zero.

If the contents of

DE Reg. Pair is not

zero go to

instruction labeled

LOOP 2

Decrement the

content of Reg. C

If the contents of

Reg. C is not zero

go to instruction

labeled “LOOP 3”

Move the contents

of stack pointer to

BC Reg. Pair

Return to the main

program.

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 120

LOOK UP TABLE:

Address Machine Code Address Machine Code

4500 80 450C B4

4501 1A 450D 88

4502 A1 450E DA

4503 64 450F 68

4504 A4 4510 D8

4505 81 4511 1A

4506 5A 4512 E8

4507 64 4513 46

4508 54 4514 E8

4509 8A 4515 83

450A B1 4516 78

450B A8 4517 86

 4518 74

OBSERVATION:

 The traffic controller is simulated.

 C I R C U I T D I A G R A M

 U4F LED4 R23 PA4 U2A LED18 R4

PB0 13 12

 U4D LED5 R7 U3F LED19 R2

PB2 PA6

 U4A LED6 R10 U3E LED20 R3

PB3 PA7

 U2D LED11 R26 U4A LED25 R9

PB1 PA0

 U2C LED12 R5 U4B LED26 R6

PB5 PA2

 U2B LED13 R11 U4C LED27 R8

PA1 PA3

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 121

 Vcc

 D LED 7

 UID UIE

PB4 9 811 10

 DLED 8

CONCLUSION:
 Thus an ALP of to control the traffic light signal was written

and executed.

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 122

23. STEPPER MOTOR CONTROL

PROBLEM STATEMENT:

 Write an ALP to drive and control a stepper motor.

THEORY:

 Stepper motor control is one of the popular applications of microprocessor

in control area. Stepper motor are capable of accepting a sequence of pulse from the

microprocessor and step accordingly. They are used to control numerical – controlled

machines, computer peripheral equipment, business machines, process control etc.

INTERFACE DRIVE CIRCUIT:

 Stepper motor requires logic signals of relatively high power. Silicon

Darlington pair TRSL100 with 2N3005 transistors are used to supply the power. The

driving pulses are generated by the interface circuit and given to the four coils of the

stepper motor. The inputs for the interface circuit are TTL pulses generated under

software control using microprocessor kit. The TTL levels of pulse sequence at the

output ports of 8255 are translated to high voltage output pulses of 12V using buffers

(IC 7406). The Darlington pair transistor TRSL100 drives the stepper motor as they

withstand higher current. A 620 resistor and a diode connected between power supply

and Darlington pair collector are used for supporting fly back current. PA0 – PA3 of port

A are used for driving the transistor TRSL100. The four collector points of each

transistor are brought to a 5 pair connector for connecting to a stepper motor.

PROGRAM

MEMORY

ADDRESS

OPCODE LABEL MNEMONIC OPERAND COMMENTS

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 123

 3E

80

D3

43

3E

88

D3

40

CD

50

41

0F

C3

06

41

LOOP

MVI

OUT

MVI

OUT

CALL

RRC

JMP

A, 80

43 H

A, 88

40 H

DELAY

LOOP

Control word to

initialize the port A

of 8255 as output port

Data sent to port A to

energize the winding

of stepper motor.

Call the subroutine

“DELAY”

Rotate the Acc –

contents rights carry

by 1 bit.

Jump unconditionally

to the instruction

labeled “LOOP”

WINDING CONNECTION OF STEPPER MOTOR

A

B

 COMMON

 C

 D

DRIVER CIRCUIT FOR ENERGISING EACH WINDING

 +12V

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 124

 620 WA 1N4001

PA 220

 SL 100

 220

 2N 3055

I / O decoding:

Address selection

43 H Port A is selected

40 H Stepper motor is selected

FLOW CHART:

START

Initialize the I/O ports

of 8255

Energize the windings of stepper

motor

CALL DELAY

Get the next winding by rotating the Acc.

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 125

SUBROUTINE:

 NO

 YES

DELAY

[B]  05 H

[C]  FF H

[D]  FF H

[D]  [D] - 1

[C]  [C] - 1

IS

[D] = 0?

IS

[C]= 0?

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 126

 NO

 YES

 NO

 YES

SUBROUTINE PROGRAM:

MEMORY

ADDRESS

OPCODE LABEL MNEMONIC OPERAND COMMENTS

4150

4151

4152

4153

4154

4155

4156

4157

4158

4159

415A

415B

415C

415D

415E

415F

4160

4161

06

05

0E

FF

16

FF

15

C2

56

41

0D

C2

54

41

05

C2

52

41

DELAY

LOOP – 1

LOOP – 2

LOOP – 3

MVI

MVI

MVI

DCR

JNZ

DCR

JNZ

DCR

JNZ

B, 05

C, FF

D, FF

D

LOOP – 3

C

LOOP – 2

B

LOOP – 1

Get the data 05 H in

Reg. B

Get the data FF H in

Reg. C

Get the data FF H in

Reg. D

Decrement the

contents of Reg. D

If the contents of

Reg. D is not zero go

to instruction labeled

LOOP - 3

Decrement the

contents of Reg. C

If the contents of

Reg. C is not zero go

to instruction labeled

LOOP - 2

Decrement the

contents of Reg. B

If the contents of

Reg. B is not zero go

to instruction labeled

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 127

4162

C9

RET

LOOP –1

Return to the main

program.

CONCLUSION:

 Thus an ALP to drive and control a stepper motor was written and

executed.

24. 8051 - SUM OF ELEMENTS IN AN ARRAY

AIM:

To find the sum of elements in an array.

ALGORITHM:

1. Load the array in the consecutive memory location and initialize the

memory pointer with the starting address.

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 128

2. Load the total number of elements in a separate register as a

counter.

3. Clear the accumulator.

4. Load the other register with the value of the memory pointer.

5. Add the register with the accumulator.

6. Check for carry, if exist, increment the carry register by 1.

otherwise, continue

7. Decrement the counter and if it reaches 0, stop. Otherwise increment

the memory pointer by 1 and go to step 4.

RESULT:

 The sum of elements in an array is calculated.

PROGRAM:

MOV DPTR, #4200

MOVX A, @DPTR

MOV R0, A

MOV B, #00

MOV R1, B

INC DPTR

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 129

LOOP2: CLR C

MOVX A, @DPTR

ADD A, B

MOV B, A

JNC LOOP

INC R1

LOOP: INC DPTR

DJNZ R0, LOOP2

MOV DPTR, #4500

MOV A, R1

MOVX @DPTR, A

INC DPTR

MOV A, B

MOVX @DPTR, A

HLT: SJMP HLT

INPUT OUTPUT:

4200 04 4500 0F

4201 05 4501 00

4201 06

4202 03

4203 02

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 130

25(A).8051 - HEXADECIMAL TO DECIMAL CONVERSION

AIM:

To perform hexadecimal to decimal conversion.

ALGORITHM:

1. Load the number to be converted into the accumulator.

2. If the number is less than 100 (64H), go to next step; otherwise, subtract

100 (64H) repeatedly until the remainder is less than 100 (64H). Have the

count(100‟s value) in separate register which is the carry.

3. If the number is less than 10 (0AH), go to next step; otherwise, subtract 10

(0AH) repeatedly until the remainder is less than 10 (0AH). Have the

count(ten‟s value) in separate register.

4. The accumulator now has the units.

5. Multiply the ten‟s value by 10 and add it with the units.

6. Store the result and carry in the specified memory location.

RESULT

 The given hexadecimal number is converted into decimal number.

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 131

PROGRAM:

MOV DPTR, #4500

MOVX A, @DPTR

MOV B, #64

DIV A, B

MOV DPTR, #4501

MOVX @DPTR, A

MOV A, B

MOV B, #0A

DIV A, B

INC DPTR

MOVX @DPTR, A

INC DPTR

MOV A, B

MOVX @DPTR, A

HLT: SJMP HLT

INPUT OUTPUT:

4500 D7 4501 15

 4502 02

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 132

25(B).8051 - DECIMAL TO HEXADECIMAL CONVERSION

AIM:

 To perform decimal to hexadecimal conversion

ALGORITHM:

1. Load the number to be converted in the accumulator.

2. Separate the higher order digit from lower order.

3. Multiply the higher order digit by 10 and add it with the lower order digit.

4. Store the result in the specified memory location.

RESULT:

 The given decimal number is converted to hexadecimal number.

PROGRAM:

MOV DPTR, #4500

MOVX A, @DPTR

 MOV B, #0A

 MUL A, B

MOV B, A

INC DPTR

MOVX A, @DPTR

 ADD A, B

 INC DPTR

MOVX @DPTR, A

HLT: SJMP HLT

 INPUT OUTPUT

4500 23 4501 17

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 133

26. STEPPER MOTOR INTERFACING WITH 8051

AIM:

To interface a stepper motor with 8051 microcontroller and operate it.

THEORY:

 A motor in which the rotor is able to assume only discrete stationary angular

position is a stepper motor. The rotary motion occurs in a step-wise manner from one

equilibrium position to the next. Stepper Motors are used very wisely in position control

systems like printers, disk drives, process control machine tools, etc.

 The basic two-phase stepper motor consists of two pairs of stator poles. Each of

the four poles has its own winding. The excitation of any one winding generates a North

Pole. A South Pole gets induced at the diametrically opposite side. The rotor magnetic

system has two end faces. It is a permanent magnet with one face as South Pole and the

other as North Pole.

 The Stepper Motor windings A1, A2, B1, B2 are cyclically excited with a DC

current to run the motor in clockwise direction. By reversing the phase sequence as A1,

B2, A2, B1, anticlockwise stepping can be obtained.

2-PHASE SWITCHING SCHEME:

 In this scheme, any two adjacent stator windings are energized. The switching

scheme is shown in the table given below. This scheme produces more torque.

ANTICLOCKWISE CLOCKWISE

STEP A1 A2 B1 B2 DATA STEP A1 A2 B1 B2 DATA

1 1 0 0 1 9h 1 1 0 1 0 Ah

2 0 1 0 1 5h 2 0 1 1 0 6h

3 0 1 1 0 6h 3 0 1 0 1 5h

4 1 0 1 0 Ah 4 1 0 0 1 9h

ADDRESS DECODING LOGIC:

The 74138 chip is used for generating the address decoding logic to generate the

device select pulses, CS1 & CS2 for selecting the IC 74175.The 74175 latches the data

bus to the stepper motor driving circuitry.

 Stepper Motor requires logic signals of relatively high power. Therefore, the

interface circuitry that generates the driving pulses use silicon darlington pair transistors.

The inputs for the interface circuit are TTL pulses generated under software control using

the Microcontroller Kit. The TTL levels of pulse sequence from the data bus is translated

to high voltage output pulses using a buffer 7407 with open collector.

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 134

PROGRAM :

Address
OPCODES Label

Comments

 ORG 4100h

4100

START: MOV DPTR, #TABLE Load the start

address of switching

scheme data TABLE

into Data Pointer

(DPTR)

4103 MOV R0, #04 Load the count in R0

4105

LOOP: MOVX A, @DPTR Load the number in

TABLE into A

4106 PUSH DPH Push DPTR value to

Stack 4108 PUSH DPL

410A

 MOV DPTR, #0FFC0h Load the Motor port

address into DPTR

410D

 MOVX @DPTR, A Send the value in A

to stepper Motor port

address

410E MOV R4, #0FFh Delay loop to cause

a specific amount of

time delay before

next data item is sent

to the Motor

4110

DELAY

:

MOV R5, #0FFh

4112

DELAY

1:

DJNZ R5, DELAY1

4114 DJNZ R4, DELAY

4116 POP DPL POP back DPTR

value from Stack 4118 POP DPH

411A

 INC DPTR Increment DPTR to

point to next item in

the table

411B

 DJNZ R0, LOOP Decrement R0, if not

zero repeat the loop

411D

 SJMP START Short jump to Start

of the program to

make the motor

rotate continuously

411F

TABLE: DB 09 05 06 0Ah Values as per two-

phase switching

scheme

PROCEDURE:

MICROPROCESSOR MANUAL

@WWW.GETITCSE.TK Page 135

Enter the above program starting from location 4100.and execute the same. The

stepper motor rotates. Varying the count at R4 and R5 can vary the speed. Entering the

data in the look-up TABLE in the reverse order can vary direction of rotation.

RESULT:

 Thus a stepper motor was interfaced with 8051 and run in forward and reverse

directions at various speeds.

