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 UNIT - I  ALGORITHM ANALYSIS  

                          

Algorithm analysis – Time space tradeoff – Asymptotic notations – Conditional asymptotic 

notation – Removing condition from the conditional asymptotic notation – Properties of 

Big-oh notation – Recurrence equations – Solving recurrence equations – Analysis of linear 

search. 

 

 

1.1 Introduction 

An algorithm is a sequence of unambiguous instruction for solving a problem, for obtaining 

a required output for any legitimate input in a finite amount of time. 

 

Definition 

“Algorithmic is more than the branch of computer science. It is the core of computer 

science, and, in all fairness, can be said to be relevant it most of science, business and 

technology” 

 

Understanding of Algorithm 

 

An algorithm is a sequence of unambiguous instruction for solving a problem, for obtaining 

a required output for any legitimate input in a finite amount of time. 

 

                                                      Problem 

      

                 Algorithm 

 

 

                           Input                                                               Output 

 

 

ALGORITHM DESIGN AND ANALYSIS PROCESS 

 

 

“Computer” 
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1.2 FUNDAMENTALS OF THE ANALYSIS OF ALGORITHM EFFICIENCY 

 

1.2.1 ANALYSIS FRAME WORK 

 

♦ there are two kinds of efficiency 

♦ Time efficiency - indicates how fast an algorithm in question runs. 

♦ Space efficiency - deals with the extra space the algorithm requires.  

 

1.2.2 MEASURING AN INPUT SIZE 

 

♦  An algorithm's efficiency as a function of some parameter n indicating the algorithm's 

input size. 

♦  In most cases, selecting such a parameter is quite straightforward. 

♦ For example, it will be the size of the list for problems of sorting, searching, finding the 

list's smallest element, and most other problems dealing with lists. 

♦  For the problem of evaluating a polynomial p(x) = a n x 
n
+ . . . + a 0 of degree n, it will 

be the polynomial's degree or the number of its coefficients, which is larger by one than 

its degree.  

UNDERSTAND THE 
PROBLEM 

DECIDE ON: 
COMPUTATIONAL 
MEANS, 
EXACT VS APPROXIMATE 
SOLVING 
DATA STRUCTURE(S) 
ALG DESIGN TECHNIQUES 

DESIGN THE ALGORITHM 

PROVE CORRECTNESS 

ANALYSE THE ALGORITHM 

CODE THE ALGORITHM 
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♦  There are situations, of course, where the choice of a parameter indicating an input size 

does matter.  

♦ Example - computing the product of two  n-by-n matrices.  

       ♦ There are two natural measures of size for this problem.  

             ♦ The matrix order n.  

♦  The total number of elements N in the matrices being multiplied.  

♦ Since there is a simple formula relating these two measures, we can easily switch from 

one to the other, but the answer about an algorithm's efficiency will be qualitatively 

different depending on which of the two measures we use.  

♦  The choice of an appropriate size metric can be influenced by operations of the 

algorithm in question. For example, how should we measure an input's size for a spell-

checking algorithm? If the algorithm examines individual characters of its input, then 

we should measure the size by the number of characters; if it works by processing 

words, we should count their number in the input. 

♦  We should make a special note about measuring size of inputs for algorithms involving 

properties of numbers (e.g., checking whether a given integer n is prime). 

♦  For such algorithms, computer scientists prefer measuring size by the number b of bits 

in the n's binary representation: 

b=log2n +1 

♦  This metric usually gives a better idea about efficiency of algorithms in question. 

 

1.2.3 UNITS FOR MEASURING RUN TIME: 

♦  We can simply use some standard unit of time measurement-a second, a millisecond, 

and so on-to measure the running time of a program implementing the algorithm. 

♦  There are obvious drawbacks to such an approach. They are 

♦  Dependence on the speed of a particular computer 

♦  Dependence on the quality of a program implementing the algorithm 

♦  The compiler used in generating the machine code 

♦  The difficulty of clocking the actual running time of the program. 

♦  Since we are in need to measure algorithm efficiency, we should have a metric that 

does not depend on these extraneous factors. 

♦  One possible approach is to count the number of times each of the algorithm's 

operations is executed. This approach is both difficult and unnecessary. 

♦  The main objective is to identify the most important operation of the algorithm, called 

the basic operation, the operation contributing the most to the total running time, and 

compute the number of times the basic operation is executed. 

♦  As a rule, it is not difficult to identify the basic operation of an algorithm. 

 

WORST CASE, BEST CASE AND AVERAGE CASE EFFICIENCES 

♦  It is reasonable to measure an algorithm's efficiency as a function of a parameter 

indicating the size of the algorithm's input. 
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♦  But there are many algorithms for which running time depends not only on an input 

size but also on the specifics of a particular input. 

♦  Example, sequential search. This is a straightforward algorithm that searches for a 

given item (some search key K) in a list of n elements by checking successive elements 

of the list until either a match with the search key is found or the list is exhausted.  

♦  Here is the algorithm's pseudo code, in which, for simplicity, a list is implemented as 

an array. (It also assumes that the second condition A[i] i= K will not be checked if the 

first one, which checks that the array's index does not exceed its upper bound, fails.) 

 

ALGORITHM  Sequential Search(A[0..n -1], K) 

//Searches for a given value in a given array by sequential search 

 //Input: An array A[0..n -1] and a search key K 

//Output: Returns the index of the first element of A that matches K 

 // or -1 ifthere are no matching elements 

        i←0 

       while i < n and A[i] ≠ K do 

i←i+1 

if i < n return i 

else return -1 

♦  Clearly, the running time of this algorithm can be quite different for the same list size 

n. 

 

Worst case efficiency 

 

♦  The worst-case efficiency of an algorithm is its efficiency for the worst-case input of 

size n, which is an input (or inputs) of size n for which the algorithm runs the longest 

among all possible inputs of that size.  

♦  In the worst case, when there are no matching elements or the first matching element 

happens to be the last one on the list, the algorithm makes the largest number of key 

comparisons among all possible inputs of size n: 

                                 Cworst (n) = n. 

♦  The way to determine is quite straightforward 

♦  To analyze the algorithm to see what kind of inputs yield the largest value of the basic 

operation's count C(n) among all possible inputs of size n and then compute this worst-

case value  C worst (n) 

♦  The worst-case analysis provides very important information about an algorithm's 

efficiency by bounding its running time from above. In other words, it guarantees that 

for any instance of size n, the running time will not exceed C worst (n) its running time 

on the worst-case inputs. 
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Best case Efficiency 

 

♦  The best-case efficiency of an algorithm is its efficiency for the best-case input of size 

n, which is an input (or inputs) of size n for which the algorithm runs the fastest among 

all possible inputs of that size. 

♦  We can analyze the best case efficiency as follows. 

♦  First, determine the kind of inputs for which the count C (n) will be the smallest among 

all possible inputs of size n. (Note that the best case does not mean the smallest input; it 

means the input of size n for which the algorithm runs the fastest.) 

♦  Then ascertain the value of C (n) on these most convenient inputs. 

♦  Example- for sequential search, best-case inputs will be lists of size n with their first 

elements equal to a search key; accordingly, Cbest(n) = 1. 

♦  The analysis of the best-case efficiency is not nearly as important as that of the worst-

case efficiency. 

♦  But it is not completely useless. For example, there is a sorting algorithm (insertion 

sort) for which the best-case inputs are already sorted arrays on which the algorithm 

works very fast. 

♦  Thus, such an algorithm might well be the method of choice for applications dealing 

with almost sorted arrays. And, of course, if the best-case efficiency of an algorithm is 

unsatisfactory, we can immediately discard it without further analysis. 

Average case efficiency 

 

♦  It yields the information about an algorithm about an algorithm‘s behaviour on a 

―typical‖ and ―random‖ input. 

♦  To analyze the algorithm's average-case efficiency, we must make some assumptions 

about possible inputs of size n. 

♦  The investigation of the average case efficiency is considerably more difficult than 

investigation of the worst case and best case efficiency. 

♦  It involves dividing all instances of size n .into several classes so that for each instance 

of the class the number of times the algorithm's basic operation is executed is the same. 

♦  Then a probability distribution of inputs needs to be obtained or assumed so that the 

expected value of the basic operation's count can then be derived. 

The average number of key comparisions Cavg(n) can be computed as follows, 

♦  let us consider again sequential search. The standard assumptions are, 

♦  In the case of a successful search, the probability of the first match occurring in the ith 

position of the list is pin for every i, and the number of comparisons made by the 

algorithm in such a situation is obviously i. 

♦  In the case of an unsuccessful search, the number of comparisons is n with the 

probability of such a search being (1 - p). Therefore, 

 

                                   p          p                    p                     p 

 Cavg(n)   =   [  1 . — + 2. — + …. + i . — + ….. + n . —]  + n .(1 - p) 

                                  n           n                    n                      n 

         =    p                           

                         — [1 + 2 + 3 +…. + i +…. + n] + n (1 - p) 
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                         n 

         =   p      n ( n +1)                         

                       —                       +   n ( 1 - p) 

                        n            2 

                        p  ( n + 1)                         

                   =                      +   n ( 1 - p) 

                              2          

♦ Example, if p = 1 (i.e., the search must be successful), the average number of key 

comparisons made by sequential search is (n + 1) /2. 

♦  If p = 0 (i.e., the search must be unsuccessful), the average number of key comparisons 

will be n because the algorithm will inspect all n elements on all such inputs. 

 

1.2.5 Asymptotic Notations 

 

Step count is to compare time complexity of two programs that compute same function and 

also to predict the growth in run time as instance characteristics changes. Determining 

exact step count is difficult and not necessary also. Because the values are not exact 

quantities. We need only comparative statements like c1n
2
 ≤ tp(n) ≤ c2n

2
. 

 

For example, consider two programs with complexities c1n
2 

+ c2n and c3n respectively. For 

small values of n, complexity depend upon values of  c1, c2 and c3. But there will also be an 

n beyond which complexity of c3n  is better than that of c1n
2 

+ c2n.This value of n is called 

break-even point. If this point is zero, c3n is always faster (or at least as fast). Common 

asymptotic functions are given below. 

 

Function Name 

1 Constant 

log n Logarithmic 

n Linear 

n log n n log n 

n
2
 Quadratic 

n
3
 Cubic 

2
n
 Exponential 

n! Factorial 

 

 

Big ‘Oh’ Notation (O) 

 

O(g(n)) = { f(n) : there exist positive constants c and n0 such that 0 ≤ f(n) ≤ cg(n) for all n ≥ 

n0 } 

It is the upper bound of any function. Hence it denotes the worse case complexity of any 

algorithm. We can represent it graphically as  

 

www.geitcse.tk



CS1252-DAA   

  

 

11 

   
   Fig 1.1 

 

Find the Big ‗Oh‘ for the following functions: 

 

Linear Functions 

 

Example 1.6 

f(n) = 3n + 2 

 

General form is f(n) ≤ cg(n) 

 

When n ≥ 2,    3n + 2 ≤ 3n + n = 4n 

Hence f(n) = O(n), here c = 4 and n0 = 2 

 

When n ≥ 1,    3n + 2 ≤ 3n + 2n = 5n 

Hence f(n) = O(n), here c = 5 and n0 = 1 

 

Hence we can have different c,n0 pairs satisfying for a given function. 

 

Example  

f(n) = 3n + 3 

When n ≥ 3,    3n + 3 ≤ 3n + n = 4n 

Hence f(n) = O(n), here c = 4 and n0 = 3 

 

Example  

f(n) = 100n + 6 

When n ≥ 6,    100n + 6 ≤ 100n + n = 101n 

Hence f(n) = O(n), here c = 101 and n0 = 6 

 

 

Quadratic Functions 

 

Example 1.9 

f(n) = 10n
2
 + 4n + 2 

When n ≥ 2,    10n
2
 + 4n + 2 ≤ 10n

2
 + 5n 

When n ≥ 5,    5n ≤ n
2
,   10n

2
 + 4n + 2 ≤ 10n

2
 + n

2    
= 11n

2
 

Hence f(n) = O(n
2
), here c = 11 and n0 = 5 
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Example 1.10 

f(n) = 1000n
2
 + 100n - 6 

f(n) ≤ 1000n
2
 + 100n for all values of n. 

When n ≥ 100,    5n ≤ n
2
,   f(n) ≤ 1000n

2
 + n

2  
= 1001n

2
 

Hence f(n) = O(n
2
), here c = 1001 and n0 = 100 

 

 

Exponential Functions 

 

Example 1.11 

f(n) = 6*2
n
 + n

2 

When n ≥ 4,    n
2
 ≤ 2

n
  

So f(n) ≤  6*2
n
 + 2

n  
= 7*2

n
  

Hence f(n) = O(2
n
), here c = 7 and n0 = 4 

 

 

Constant Functions 

 

Example 1.12 

f(n) = 10
 

f(n) = O(1), because f(n) ≤ 10*1 

 

Omega Notation (Ω) 

 

Ω (g(n)) = { f(n) : there exist positive constants c and n0 such that 0 ≤ cg(n) ≤ f(n) for all n 

≥ n0 } 

It is the lower bound of any function. Hence it denotes the best case complexity of any 

algorithm. We can represent it graphically as  

  
Fig 1.2 

Example 1.13 

f(n) = 3n + 2 

3n + 2 > 3n  for all n.  

Hence f(n) =  Ω(n) 

 

Similarly we can solve all the examples specified under Big ‗Oh‘. 
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Theta Notation (Θ) 

 

Θ(g(n)) = {f(n) : there exist positive constants c1,c2 and n0 such that c1g(n) ≤f(n) ≤c2g(n) for 

all n ≥ n0 } 

If f(n) = Θ(g(n)), all values of n right to n0 f(n) lies on or above c1g(n) and on or below 

c2g(n).   Hence it is asymptotic tight bound for f(n).  

 
  Fig 1.3 

Example 1.14 

f(n) = 3n + 2 

f(n) =  Θ(n) because f(n) = O(n) , n ≥ 2. 

 

Similarly we can solve all examples specified under Big‘Oh‘. 

 

 

Little-O Notation 

 

For non-negative functions, f(n) and g(n), f(n) is little o of g(n) if and only if f(n) = O(g(n)), 

but f(n) ≠ Θ(g(n)). This is denoted as "f(n) = o(g(n))". 

 

This represents a loose bounding version of Big O. g(n) bounds from the top, but it does 

not bound the bottom. 

 

Little Omega Notation 

For non-negative functions, f(n) and g(n), f(n) is little omega of g(n) if and only if f(n) = 

Ω(g(n)), but f(n) ≠ Θ(g(n)). This is denoted as "f(n) = ω(g(n))". 

 

Much like Little Oh, this is the equivalent for Big Omega. g(n) is a loose lower boundary of 

the function f(n); it bounds from the bottom, but not from the top.  

 

 

Conditional asymptotic notation 

Many algorithms are easier to analyse if initially we restrict our attention to instances 

whose size satisfies a certain condition, such as being a power of 2. Consider, for example, 
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the divide and conquer algorithm for multiplying large integers that we saw in the 

Introduction. Let n be the size of the integers to be multiplied.  

 

The algorithm proceeds directly if n = 1, which requires a microseconds for an appropriate 

constant a. If n>1, the algorithm proceeds by multiplying four pairs of integers of size 

n/2 (or three if we use the better algorithm).  

 

Moreover, it takes a linear amount of time to carry out additional tasks. For simplicity, let 

us say that the additional work takes at most bn microseconds for an appropriate constant b. 

 

 

Properties of Big-Oh Notation 

Generally, we use asymptotic notation as a convenient way to examine what can happen in 

a function in the worst case or in the best case. For example, if you want to write a function 

that searches through an array of numbers and returns the smallest one: 

 

function find-min(array a[1..n]) 

  let j :=  

  for i := 1 to n: 

    j := min(j, a[i]) 

  repeat 

  return j 

end 

 

Regardless of how big or small the array is, every time we run find-min, we have to 

initialize the i and j integer variables and return j at the end. Therefore, we can just think of 

those parts of the function as constant and ignore them. 

 

So, how can we use asymptotic notation to discuss the find-min function? If we search 

through an array with 87 elements, then the for loop iterates 87 times, even if the very first 

element we hit turns out to be the minimum. Likewise, for n elements, the for loop iterates 

n times. Therefore we say the function runs in time O(n). 

 

 

function find-min-plus-max(array a[1..n]) 

  // First, find the smallest element in the array 

  let j := ; 

  for i := 1 to n: 

    j := min(j, a[i]) 

  repeat 

  let minim := j 

   

  // Now, find the biggest element, add it to the smallest and 

  j := ; 

  for i := 1 to n: 

    j := max(j, a[i]) 

  repeat 
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  let maxim := j 

   

  // return the sum of the two 

  return minim + maxim; 

end 

 

What's the running time for find-min-plus-max? There are two for loops, that each iterate n 

times, so the running time is clearly O(2n). Because 2 is a constant, we throw it away and 

write the running time as O(n). Why can you do this? If you recall the definition of Big-O 

notation, the function whose bound you're testing can be multiplied by some constant. If 

f(x)=2x, we can see that if g(x) = x, then the Big-O condition holds. Thus O(2n) = O(n). 

This rule is general for the various asymptotic notations.   

 

Recurrence 

When an algorithm contains a recursive call to itself, its running time can often be 

described by a recurrence 

 

Recurrence Equation 

 

A recurrence relation is an equation that recursively defines a sequence. Each term of the 

sequence is defined as a function of the preceding terms. A difference equation is a specific 

type of recurrence relation. 

 

An example of a recurrence relation is the logistic map: 

 

 
 

1.3 Another Example: Fibonacci numbers 

The Fibonacci numbers are defined using the linear recurrence relation 

 

with seed values: 

 

 

Explicitly, recurrence yields the equations: 

 

 

 

etc. 
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We obtain the sequence of Fibonacci numbers which begins: 

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ... 

It can be solved by methods described below yielding the closed form expression which 

involve powers of the two roots of the characteristic polynomial t
2
 = t + 1; the generating 

function of the sequence is the rational function t / (1 − t − t
2
). 

 

Solving Recurrence Equation  

i. substitution method 

 

The substitution method for solving recurrences entails two steps: 

1. Guess the form of the solution. 

2. Use mathematical induction to find the constants and show that the solution 

works. The name comes from the substitution of the guessed answer for the 

function when the inductive hypothesis is applied to smaller values. This method is 

powerful, but it obviously 

can be applied only in cases when it is easy to guess the form of the answer. The 

substitution method can be used to establish either upper or lower bounds on a 

recurrence. As an example, let us determine an upper bound on the recurrence 

 

 
 

 

which is similar to recurrences (4.2) and (4.3). We guess that the solution is T (n) = O(n lg 

n).Our method is to prove that T (n) ≤ cn lg n for an appropriate choice of the constant c > 

0. We start by assuming that this bound holds for ⌊n/2⌋, that is, that T (⌊n/2⌋) ≤ c ⌊n/2⌋ 

lg(⌊n/2⌋). 

 

Substituting into the recurrence yields 
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where the last step holds as long as c ≥ 1. 

 

Mathematical induction now requires us to show that our solution holds for the boundary 

conditions. Typically, we do so by showing that the boundary conditions are suitable as 

base cases for the inductive proof. For the recurrence (4.4), we must show that we can 

choose the constant c large enough so that the bound T(n) = cn lg n works for the boundary 

conditions as well. This requirement can sometimes lead to problems. Let us assume, for 

the sake of argument, that T (1) = 1 is the sole boundary condition of the recurrence. Then 

for n = 1, the bound T (n) = cn lg n yields T (1) = c1 lg 1 = 0, which is at odds with T (1) = 

1. Consequently, the base case of our inductive proof fails to hold. 

 

This difficulty in proving an inductive hypothesis for a specific boundary condition can be 

easily overcome. For example, in the recurrence (4.4), we take advantage of asymptotic 

notation only requiring us to prove T (n) = cn lg n for n ≥ n0, where n0 is a constant of our 

choosing. The idea is to remove the difficult boundary condition T (1) = 1 from 

consideration 

 

1. In the inductive proof. 

 

 Observe that for n > 3, the recurrence does not depend directly on T 

(1). Thus, we can replace T (1) by T (2) and T (3) as the base cases in the inductive proof, 

letting n0 = 2. Note that we make a distinction between the base case of the recurrence (n = 

1) and the base cases of the inductive proof (n = 2 and n = 3). We derive from the 

recurrence that T (2) = 4 and T (3) = 5. The inductive proof that T (n) ≤ cn lg n for some 

constant c ≥ 1 can now be completed by choosing c large enough so that T (2) ≤ c2 lg 2 and 

T (3) ≤ c3 lg 3. As it turns out, any choice of c ≥ 2 suffices for the base cases of n = 2 and n 

= 3 to hold. For most of the recurrences we shall examine, it is straightforward to extend 

boundary conditions to make the inductive assumption work for small n. 

 

2. The iteration method 

The method of iterating a recurrence doesn't require us to guess the answer, but it may 

require more algebra than the substitution method. The idea is to expand (iterate) the 

recurrence and express it as a summation of terms dependent only on n and the initial 

conditions. Techniques for evaluating summations can then be used to provide bounds on 

the solution. 

 

As an example, consider the recurrence 
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T(n) = 3T(n/4) + n. 

We iterate it as follows: 

 

 

T(n) = n + 3T(n/4) 

 

= n + 3 (n/4 + 3T(n/16)) 

 

= n + 3(n/4 + 3(n/16 + 3T(n/64))) 

 

= n + 3 n/4 + 9 n/16 + 27T(n/64), 

where n/4/4 = n/16 and n/16/4 = n/64 follow from the identity (2.4). 

 

How far must we iterate the recurrence before we reach a boundary condition? The ith term 

in the series is 3
i 

n/4
i
. The iteration hits n = 1 when n/4

i
 = 1 or, equivalently, when i 

exceeds log4 n. By continuing the iteration until this point and using the bound n/4
i
 n/4

i
, 

we discover that the summation contains a decreasing geometric series:  

 

 

3. The master method 

The master method provides a "cookbook" method for solving recurrences of the form 

 

 
 

where a ≥ 1 and b > 1 are constants and f (n) is an asymptotically positive function. 

The master method requires memorization of three cases, but then the solution of 

many recurrences can be determined quite easily, often without pencil and paper. 

 

The recurrence (4.5) describes the running time of an algorithm that divides a 

problem of size 

n into a subproblems, each of size n/b, where a and b are positive constants. The a  

subproblems are solved recursively, each in time T (n/b). The cost of dividing the 
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problem and combining the results of the subproblems is described by the function 

f (n). (That is, using the notation from Section 2.3.2, f(n) = D(n)+C(n).) For example, 

the recurrence arising from the MERGE-SORT procedure has a = 2, b = 2, and f (n) 

= Θ(n).  

 

As a matter of technical correctness, the recurrence isn't actually well defined 

because n/b might not be an integer. Replacing each of the a terms T (n/b) with 

either T (⌊n/b⌋) or T (⌈n/b⌉) doesn't affect the asymptotic behavior of the 

recurrence, however. We normally find it convenient, therefore, to omit the floor 

and ceiling functions when writing divide-and- conquer recurrences of this form. 

 

 

1.4 Analysis of Linear Search  

 

Linear Search, as the name implies is a searching algorithm which obtains its result by 

traversing a list of data items in a linear fashion. It will start at the beginning of a list, and 

mosey on through until the desired element is found, or in some cases is not found. The 

aspect of Linear Search which makes it inefficient in this respect is that if the element is not 

in the list it will have to go through the entire list. As you can imagine this can be quite 

cumbersome for lists of very large magnitude, keep this in mind as you contemplate how 

and where to implement this algorithm. Of course conversely the best case for this would 

be that the element one is searching for is the first element of the list, this will be elaborated 

more so in the ―Analysis & Conclusion‖ section of this tutorial. 

 

Linear Search Steps: 

 

Step 1 - Does the item match the value I’m looking for? 

Step 2 - If it does match return, you’ve found your item! 

Step 3 - If it does not match advance and repeat the process. 

Step 4 - Reached the end of the list and still no value found? Well obviously the item 

is not in the list! Return -1 to signify you have not found your value. 

 

As always, visual representations are a bit more clear and concise so let me present one for 

you now. Imagine you have a random assortment of integers for this list: 

 

Legend:  

-The key is blue 

-The current item is green. 

-Checked items are red 

 

Ok so here is our number set, my lucky number happens to be 7 so let‘s put this value as 

the key, or the value in which we hope Linear Search can find. Notice the indexes of the 
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array above each of the elements, meaning this has a size or length of 5. I digress let us 

look at the first term at position 0. The value held here 3, which is not equal to 7. We move 

on. 

--0 1 2 3 4 5 

[ 3 2 5 1 7 0 ] 

 

So we hit position 0, on to position 1. The value 2 is held here. Hmm still not equal to 7. 

We march on. 

--0 1 2 3 4 5 

[ 3 2 5 1 7 0 ] 

 

Position 2 is next on the list, and sadly holds a 5, still not the number we‘re looking for. 

Again we move up one. 

--0 1 2 3 4 5 

[ 3 2 5 1 7 0 ] 

 

Now at index 3 we have value 1. Nice try but no cigar let‘s move forward yet again. 

--0 1 2 3 4 5 

[ 3 2 5 1 7 0 ] 

 

Ah Ha! Position 4 is the one that has been harboring 7, we return the position in the array 

which holds 7 and exit. 

--0 1 2 3 4 5 

[ 3 2 5 1 7 0 ] 

 

As you can tell, the algorithm may work find for sets of small data but for incredibly large 

data sets I don‘t think I have to convince you any further that this would just be down right 

inefficient to use for exceeding large sets. Again keep in mind that Linear Search has its 

place and it is not meant to be perfect but to mold to your situation that requires a search. 

 

Also note that if we were looking for lets say 4 in our list above (4 is not in the set) we 

would traverse through the entire list and exit empty handed. I intend to do a tutorial on 

Binary Search which will give a much better solution to what we have here however it 

requires a special case. 

 

//linearSearch Function 

int linearSearch(int data[], int length, int val) { 

 

   for (int i = 0; i <= length; i++) { 

       if (val == data[i]) { 

          return i; 

       }//end if 

   }//end for 

   return -1;    //Value was not in the list 

}//end linearSearch Function 

 

Analysis & Conclusion 
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As we have seen throughout this tutorial that Linear Search is certainly not the absolute 

best method for searching but do not let this taint your view on the algorithm itself. People 

are always attempting to better versions of current algorithms in an effort to make existing 

ones more efficient. Not to mention that Linear Search as shown has its place and at the 

very least is a great beginner‘s introduction into the world of searching algorithms. With 

this is mind we progress to the asymptotic analysis of the Linear Search: 

 

Worst Case: 

The worse case for Linear Search is achieved if the element to be found is not in the list at 

all. This would entail the algorithm to traverse the entire list and return nothing. Thus the 

worst case running time is: 

O(N). 

 

Average Case: 

The average case is in short revealed by insinuating that the average element would be 

somewhere in the middle of the list or N/2. This does not change since we are dividing by a 

constant factor here, so again the average case would be: 

O(N). 

 

Best Case: 

The best case can be a reached if the element to be found is the first one in the list. This 

would not have to do any traversing spare the first one giving this a constant time 

complexity or:  

O(1). 
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IMPORTANT QUESTIONS 

PART-A 

 

1. Define Algorithm & Notion of algorithm. 

2. What is analysis framework? 

3. What are the algorithm design techniques? 

4. How is an algorithm‘s time efficiency measured? 

5. Mention any four classes of algorithm efficiency. 

6. Define Order of Growth. 

7. State the following Terms. 

(i) Time Complexity 

(ii) Space Complexity 

8. What are the various asymptotic Notations? 

9. What are the important problem types? 

10. Define algorithmic Strategy (or) Algorithmic Technique. 

11. What are the various algorithm strategies (or) algorithm Techniques? 

12. What are the ways to specify an algorithm? 

13. Define Best case Time Complexity . 

14. Define Worst case Time Complexity. 

15. Define Average case time complexity. 

16. What are the Basic Efficiency Classes. 

17. Define Asymptotic Notation. 

18. How to calculate the GCD value? 

 

PART-B 

 

1. (a) Describe the steps in analyzing & coding an algorithm. (10) 

(b) Explain some of the problem types used in the design of algorithm. (6) 

2. (a) Discuss the fundamentals of analysis framework . (10) 

(b) Explain the various asymptotic notations used in algorithm design. (6) 

3. (a) Explain the general framework for analyzing the efficiency of algorithm. (8) 

(b) Explain the various asymptotic efficiencies of an algorithm. (8) 

4. (a) Explain the basic efficiency classes. (10) 

(b) Explain briefly the concept of algorithmic strategies. (6) 

5. Describe briefly the notions of complexity of an algorithm. (16) 

6. (a) What is Pseudo-code? Explain with an example. (8) 

(b) Find the complexity C(n) of the algorithm for the worst case, best case and average 

case.(Evaluate average case complexity for n=3,Where n is the number of inputs) (8) 
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UNIT II: DIVIDE AND CONQUER, GREEDY METHOD 

 

Divide and conquer – General method – Binary search – Finding maximum and minimum 

– Merge sort – Greedy algorithms – General method – Container loading – Knapsack 

problem 

 

2.1. DIVIDE AND CONQUER 

 

Divide and Conquer is one of the best-known general algorithm design technique. Divide-

and-conquer algorithms work according to the following general plan:  

2. The smaller instances are solved (typically recursively, though sometimes a different 

algorithm is employed when instances become small enough).  

3. If necessary, the solutions obtained for the smaller instances are combined  

to get a solution to the original problem.  

Problem of size n 

Sub problem of 
size n/2 

Sub problem of 
size n/2 

 

Solution to sub problem 1 Solution to sub problem 2 

Solution to the original 
               problem 

1. A problem's instance is divided into several smaller instances of the same problem, 

ideally of about the same size.  

 

The divide-and-conquer technique is diagrammed, which depicts the case of dividing a 

problem into two smaller sub problems,  
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Examples of divide and conquer method are Binary search, Quick sort,  

 

 

 

 

2.2. GENERAL METHOD 

 

e.g.  Merge sort. 

♦ As an example, let us consider the problem of computing the sum of n numbers a0, ...  an-

1. 

♦ If n > 1, we can divide the problem into two instances of the same problem. They are To 

compute the sum of the first └ n/2┘numbers  

♦ To compute the sum of the remaining [n/2]numbers. (Of course, if n = 1, we simply 

return a0 as the answer.)  

♦ Once each of these two sums is computed (by applying the same method, i.e., 

recursively),  

we can add their values to get the sum in question. i.e., 

a0 + .  . . + an-1 =( a0   + ....+ a└ n/2┘)  + (a└ n/2┘  + . . . . + an-1) 

 

♦ More generally, an instance of size n can be divided into several instances of size nib, 

with a of them needing to be solved. (Here, a and b are constants; a≥1 and b > 1.).  

 

♦ Assuming that size n is a power of b, to simplify our analysis, we get the following 

recurrence for the running time T(n). 

T(n)=aT(n/b)+f(n) 

 

♦ This is called the general divide and-conquer recurrence. Where f(n) is a function that 

accounts for the time spent on dividing the problem into smaller ones and on combining 

their solutions. (For the summation example, a = b = 2 and f (n) = 1. 

 

♦ Obviously, the order of growth of its solution T(n) depends on the values of the constants 

a and b and the order of growth of the function f (n). The efficiency analysis of many 

divide-and-conquer algorithms is greatly simplified by the following theorem.  

 

2.2.1. MASTER THEOREM 

 

 If f(n)    (n
d
) where d ≥ 0 in recurrence equation  is given by ,  

      (n
d
)  if a < b

d
 

 T(n)      (n
d
 log n) if a = b

d
  

   (n
1ogb a

 )  if a > b
d
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(Analogous results hold for the O and Ω  notations, too.)  

♦ For example, the recurrence equation for the number of additions A(n) made by the 

divide-and-conquer summation algorithm (see above) on inputs of size n = 2
k
 is  

A(n) = 2A(n/2) + 1.  

♦ Thus, for this example, a = 2, b = 2, and d = 0; hence, since a > b
d
,  

A(n)    (n
1ogb a

  ) =  (n
1ogz

 2) =  (n). 

 

ADVANTAGES: 

♦ The time spent on executing the problem using divide and conquer is smaller  then other 

methods. 

♦ The divide and conquer approach provides an efficient algorithm in computer science. 

♦ The divide and conquer technique is ideally suited for parallel computation in which each 

sub problem can be solved simultaneously by its own processor. 

♦ Merge sort is a perfect example of a successful application of the divide-and conquer 

technique.  

♦ It sorts a given array Al O .. n - 1) by dividing it into two halves A [O··└ n/2┘ - 1] and A[└ 

n/2┘..n - 1], sorting each of them recursively, and then merging the two smaller sorted 

arrays into a single sorted one.  

 

ALGORITHM Mergesort (A[O .. n - 1])  

//Sorts array A[O .. n - 1] by recursive mergesort  

//Input: An array A[O .. n - 1] of orderable elements  

//Output: Array A[O... n - 1] sorted in nondecreasing order  

if n > 1  

copy  A [O··└ n/2┘ - 1] to B [O··└ n/2┘ - 1] 

copy A[└ n/2┘..n - 1] to C[0...└ n/2┘ - 1] 

Mergesort (B [O··└ n/2┘ - 1]) 

Mergesort (C[0...└ n/2┘ - 1]) 

Mergesort(B,C,A) 

 

STEPS TO BE FOLLOWED 

♦ The first step of the merge sort is to chop the list into two. 

♦ If the list has even length, split the list into two equal sub lists.  

♦ If the list has odd length, divide the list into two by making the first sub list one entry 

greater than the second sub list. 

♦ then split both the sub list into two and go on until each of the sub lists are of size one. 

♦ finally, start merging the individual sub lists to obtain a sorted list. 
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♦ The operation of the algorithm for the array of elements 8,3,2,9,7,1,5,4 is explained as 

follows,   
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AN EXAMPLE OF MERGE SORT OPEERATION 

♦ The merging of two sorted arrays can be done as follows. Two pointers (array indices) 

are initialized to point to the first elements of the arrays being merged. 

♦ Then the elements pointed to are compared and the smaller of them is added to a new 

array or list being constructed. 

♦ Then the index of the smaller element is incremented to point to its immediate 

successor in the array. 

♦ This operation is continued until one of the two given arrays is exhausted 

♦Then the remaining elements of the other array are copied to the end of the new 

array.  

 

ALGORITHM : Merge Sort B(0....p-1), C(0....q-1), A(0....p + q -1)  

// Merges two sorted arrays into one sorted array .  

// Input: Array B (0....p-1) and C (0....q-1) both sorted 

//Output:  Sorted array A (0....p + q -1) of the elements of B and C 

i  0; j 0 ;k 0 

while i<p and j<q do 

if B[i] ≤ C[j] 

A[k] B[i];i i+1 

else  A[k]  C[j] j j+1 

k k+1 

if i=p 

copy C[j....q-1] to A[k....p+q-1] 

else copy B[i....p-1] to A[k....p+q-1] 

 

 

2.2.2 EFFICIENCY OF MERGE SORT 

♦ The recurrence relation for the number of key comparison C (n) is  

C (n) = 2 C (n/2) + Cmerge (n) for n>1, C (1) = 0 

♦ Assume, n is a power of 2. Cmerge (n) is the number of key comparison performed during 

the merge sort. 

♦ In the merging of two sorted array after one comparison is made the total number of 

elements in the two array still to be processed and sorted is reduced by one. 

♦ Hence in the worst case neither of the two arrays becomes empty before the other one 

contains just one element . Therefore, for the worst case,  

C worst(n)=2 C worst(n / 2)+n-1 for n > 1, C worst(1)=0 

Cmerge(n) = n – 1 

and we have the recurrence  
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Hence, according to the Master Theorem, C worst (n)   (n log n) . In fact, it is easy to find 

the exact solution to the worst-case recurrence for n = 2
k
  

           C worst(n) = n log2 n - n + 1 

 

2.3. BINARY SEARCH 

 

♦ The binary search algorithm is one of the most efficient searching techniques which 

require the list to be sorted in ascending order. 

♦ To search for an element in the list, the binary search algorithms split the list and locate 

the middle element of the list. 

♦ The middle of the list is calculated as  

Middle:=(l+r) div 2 

n – number of element in list 

♦ The algorithm works by comparing a search key element ‗k‘ with the array middle 

element a[m] 

After comparison, any one of the following three conditions occur. 

1. If  the search key element ‗k‘ is greater than a[m],then the search element is only in the 

upper or second half and eliminate the element present in the lower half.Now the value 

of l is middle m+1. 

2. If the search key element ‗k‘ is less than a[m], then the search element is only in the 

lower or first half. No need to check in the upper half. Now the value of r is middle m -

1. 

3. If the search key element ‗k‘ is equal to a[m], then the search key element is found in 

the position m. Hence the search operation is complete. 

 

 

EXAMPLE: 

The list of element are 3,14,27,31,39,42,55,70,74,81,85,93,98 and searching for k=70 in 

the list. 

index   0    1    2     3    4    5    6    7     8    9    10   11  12 

   
  value                                         l                                    m                                  r   

 

m – middle element 

m = n div 2 

   =13 div 2 

m = 6 

 

If k>a[m], then ,l =7. So, the search element is present in second half . 
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Now the array becomes 

                         7          8        9       10       11     12 

 

 

                       

l                                                  r 

m = (l + r ) div 2   = 19 div 2  

m = 9     

                    

                       7          8        9       10       11     12 

                    

 

                         

l                    m                           r 

 

Here k<a[m]  

     70 < 81 

So, the element is present in the first half 

 

Now, the array becomes 

 7         8 

 

 

 

                

    l          r 

 

Now m = (l +r) div 2 

            = (7 +8) div 2 

           m = 7 

                   7         8 

 

 

                       

l,m         r 

 

Now k = a[m] 

70 =70 

 

 

70 74 93 81 85 98 

70 74 93 81 85 98 

70 74 

70 74 
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Hence, the search key element 70 is found in the position 7 and the search operation is 

completed. 

 

ALGORITHM:   Binary search (A[0..n – 1],k) 

//Implements nonrecursive  binary search 

// Input:: An array A[0..n – 1] sorted in ascending order and  a search key k 

// Output: An index of the array’s element that is equal to k or -1 if there is no  

 //               such element 

l 0; r  n – 1 

while l<= r do 

      m  └(l + r)/ 2 ┘ 

      if k = A[m] return m 

      else if k < A[m] r  m – 1 

      else l  m+ 1 

return -1 

 

 

2.3.1. EFFICIENCY OF BINARY SEARCH 

♦ The standard way to analyze the efficiency is to count number of times search key is 

compared with an element of the array. 

 

WORST CASE ANALYSIS 

♦ The worst case include all array that do not contain a search key. 

♦ The recurrence relation for Cworst(n) is 

Cworst(n)=Cw(└ n/2┘) + 1 ,for n > 1                                                   --------(1) 

Cworst(1)=1 

For n = 2
k 

         

Equation (1) becomes 

Cworst(2
k  

) = k + 1        

Cworst(2
k  

) = log2 n + 1                                                                           -------(2) 

n is positive integer, 

Cworst(n
 
) = └log2 n ┘  +1                                                                     -------(3) 

Cworst(n
  
) =└log2 (n +1)┘                                                                      -------(4) 

In equation (1) put n = 2i. 

L.H.S becomes 

   Cworst(n
 
) = └log2 n ┘  + 1 

                     = └log22i┘ + 1 

                     = └og22 ┘+└ log2i ┘+ 1 
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                     =  1 + └log2i┘ + 1 

                     =2 +└ log2i┘ 

   Cworst(n
 
) =2 +└ log2i┘ 

R.H.S becomes 

Cworst└ n
  
/ 2 ┘+ 1= Cworst└2i /2┘

 
 + 1 

                            =Cworst(i) + 1 

                            =   log2i + 1 + 1 

                            = 2 +└ log2i┘ 

   Cworst└ n
   

/ 2┘ + 1 =2 +└ log2i┘ 

              L.H.S =R.H.S 

Hence 

   Cworst(n
 
) = └log2n ┘+ 1 and 

   Cworst(i ) = └log2i ┘+ 1 are same 

Hence 

    C worst (n) =  (log n) 

From equation (4) to search a element in a array of 1000 elements ,binary search takes. 

      └ log210
3
 ┘ + 1 = 10     key comparison 

 

AVERAGE CASE ANALYSIS: 

Average number of key comparison made by the binary search is slightly smaller than 

worst case. 

   Cavg (n) ≈ log2  n 

The average number of comparison in the successful search is  

   C
yes 

avg  (n) ≈ log2  n – 1 

The average number of comparison in the unsuccessful search is  

   C
no 

avg  (n) ≈ log2  (n + 1) 

 

ADVANTAGES 

1. In this method elements are eliminated by half each time .So it is very faster than the 

sequential search. 

2. It requires less number of comparisons than sequential search to locate the search key 

element. 

 

DISADVANTAGES 

1. An insertion and deletion of a record requires many records in the existing table be 

physically moved in order to maintain the records in sequential order. 

2. The ratio between insertion/deletion and search time is very high. 
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2.4. GREEDY TECHNIQUES 

The greedy approach suggests constructing a solution through a sequence of steps, each 

expanding a partially constructed solution obtained so far, until a complete solution to the 

problem is reached. On each step—and this is the central point of this technique—the 

choice made must be 

• Feasible, i.e., it has to satisfy the problem‘s constraints. 

• Locally optimal, i.e., it has to be the best local choice among all feasible 

choices available on that step. 

• Irrevocable, i.e., once made, it cannot be changed on subsequent steps of the 

algorithm. 

 

2.5. GENERAL METHOD 

2.5.1. PRIM’S ALGORITHM 

Definition:  

A spanning tree of a connected graph is its connected acyclic subgraph (i.e., a tree) that 

contains all the vertices of the graph. A minimum spanning tree of a weighted connected 

graph is its spanning tree of the smallest weight, where the weight of a tree is defined as the 

sum of the weights on all its edges. The minimum spanning tree problem is the problem of 

finding a minimum spanning tree for a given weighted connected graph. 

 

Two serious difficulties to construct Minimum Spanning Tree 

1.  The number of spanning trees grows exponentially with the graph size (at least for 

dense graphs).  

2.  Generating all spanning trees for a given graph is not easy. 

 

 
Figure: Graph and its spanning trees; T1 is the Minimum Spanning Tree 

 

Prim‘s algorithm constructs a minimum spanning tree through a sequence of expanding 

subtrees. The initial subtree in such a sequence consists of a single vertex selected 

arbitrarily from the set V of the graph‘s vertices. On each iteration, we expand the current 

tree in the greedy manner by simply attaching to it the nearest vertex not in that tree. The 

algorithm stops after all the graph‘s vertices have been included in the tree being 

constructed. Since the algorithm expands a tree by exactly one vertex on each of its 

iterations, the total number of such iterations is n-1, where n is the number of vertices in the 
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graph. The tree generated by the algorithm is obtained as the set of edges used for the tree 

expansions. 

 

 

Pseudocode of this algorithm 

 
 

The nature of Prim‘s algorithm makes it necessary to provide each vertex not in the current 

tree with the information about the shortest edge connecting the vertex to a tree vertex. We 

can provide such information by attaching two labels to a vertex: the name of the nearest 

tree vertex and the length (the weight) of the corresponding edge. Vertices that are not 

adjacent to any of the tree vertices can be given the label indicating their ―infinite‖ distance 

to the tree vertices a null label for the name of the nearest tree vertex. With such labels, 

finding the next vertex to be added to the current tree T = (VT, ET) become simple task of 

finding a vertex with the smallest distance label in the set V - VT. Ties can be broken 

arbitrarily. 

 

After we have identified a vertex u* to be added to the tree, we need to perform two 

operations: 

• Move u* from the set V—VT to the set of tree vertices VT. 

• For each remaining vertex U in V—VT - that is connected to u* by a shorter edge than 

the u‘s current distance label, update its labels by u* and the weight of the edge 

between u* and u, respectively. 

 

 

The following figure demonstrates the application of Prim‘s algorithm to a specific graph. 
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Fig: Graph given to find minimum spanning tree 

 

 

 
Fig: Application of Prim’s algorithm 

 

 

2.6. CONTAINER LOADING 

The greedy algorithm constructs the loading plan of a single container layer by layer from 

the bottom up. At the initial stage, the list of available surfaces contains only the initial 

surface of size L x W with its initial position at height 0. At each step, the algorithm picks 

the lowest usable surface and then determines the box type to be packed onto the surface, 

the number of the boxes and the rectangle area the boxes to be packed onto, by the 

procedure select layer. 
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The procedure select layer calculates a layer of boxes of the same type with the highest 

evaluation value. The procedure select layer uses breadth-limited tree search heuristic to 

determine the most promising layer, where the breadth is different depending on the 

different depth level in the tree search. The advantage is that the number of nodes expanded 

is polynomial to the maximal depth of the problem,  instead of exponentially growing with 

regard to the problem size. After packing the specified number of boxes onto the surface 

according to the layer arrangement, the surface is divided into up to three sub-surfaces by 

the procedure divide surfaces.  

 

Then, the original surface is deleted from the list of available surfaces and the newly 

generated sub-surfaces are inserted into the list. Then, the algorithm selects the new lowest 

usable surface and repeats the above procedures until no  surface is available or all the 

boxes have been packed into the container. The algorithm follows a similar basic 

framework.  

 

The pseudo-code of the greedy algorithm is given by the greedy heuristic procedure. 

 

procedure greedy heuristic() 

list of surface := initial surface of L x W at height 0 

list of box type := all box types 

while (there exist usable surfaces) and (not all boxes are 

packed) do 

select the lowest usable surface as current surface 

set depth := 0 

set best layer := select layer(list of surface, list of box 

type, depth) 

pack best layer on current surface 

reduce the number of the packed box type by the packed 

amount 

set a list of new surfaces := divide surfaces(current surface, 

best layer, list of box type) 

delete current surface from the list of surfaces 

insert each surface in list of new surfaces into list of 

surfaces 

end while 
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Fig: Division of the Loading Surface 

 

Given a layer of boxes of the same type arranged by the G4-heuristic, the layer is always 

packed in the bottom-left corner of the loading surface.  

 

As illustrated in above Figure, up to three sub-surfaces are to be created from the original 

loading surface by the procedure divide surfaces, including the top surface, which is above 

the layer just packed, and the possible spaces that might be left at the sides.  

If l = L or w = W, the original surface is simply divided into one or two sub-surfaces, the 

top surface and a possible side surface. Otherwise, two possible division variants exist, i.e., 

to divide into the top surface, the surface (B,C,E,F) and the surface (F,G,H, I), or to divide 

into the top surface, the surface (B,C,D, I) and the surface (D,E,G,H).  

 

The divisions are done according to the following criteria, which are similar to those in [2] 

and [5]. The primary criterion is to minimize the total unusable area of the division variant. 

If none of the remaining boxes can be packed onto a sub-surface, the area of the sub-

surface is unusable. The secondary criterion is to avoid the creation of long narrow strips.  

 

―The underlying rationale is that narrow areas might be difficult to fill subsequently‖. More 

specifically, if L−l ≥ W −w, the loading surface is divided into the top surface, the surface 

(B,C,E,F) and the surface (F,G,H, I). Otherwise, it is divided into the top surface, the 

surface (B,C,D, I) and the surface  (D,E,G,H).  

 

2.6.1. Algorithm for Container Loading  
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2.7. KNAPSACK PROBLEM 

 

The knapsack problem or rucksack problem is a problem in combinatorial optimization: 

Given a set of items, each with a weight and a value, determine the number of each item to 

include in a collection so that the total weight is less than a given limit and the total value is 

as large as possible. It derives its name from the problem faced by someone who is 

constrained by a fixed-size knapsack and must fill it with the most useful items. 

 

The problem often arises in resource allocation with financial constraints. A similar 

problem also appears in combinatorics, complexity theory, cryptography and applied 

mathematics. 

 

The decision problem form of the knapsack problem is the question "can a value of at least 

V be achieved without exceeding the weight W?" 

 

E.g.  

A thief enters a store and sees the following items: 
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His Knapsack holds 4 pounds. 

What should he steal to maximize profit? 

 

Fractional Knapsack Problem 

Thief can take a fraction of an item. 

 

$100 
$10 

$120 

2 pd 2 pd 3 pd 

A 

B 
C 

  2 pounds of item A 

  2 pounds of item C 

2 pds 

A 

$100 

2 pds 

C 

$80 

Solution =  + 
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IMPORTANT QUESTIONS 
PART-A 

 

1. Give the time efficiency & Drawback of merge sort Algorithm. 

2. What is the difference between DFS & BFS? 

3. What is the Brute Force Algorithmic Strategy? 

4. State the time complexity of following: 

(i) Bubble sort 

(ii) Selection sort 

(iii) Sequential search 

(iv) Brute force string matching 

5. What are the features of Brute force String matching algorithm? 

6. Define ―Divide & Conquer Technique‖. 

7. State Master‘s Theorem. 

8. Define Merge sort & explain three steps of Merge sort. 

9. Define Quick sort & explain three steps of Quick sort. 

10. Define Binary Search. 

11. What are the applications of binary search? 

12. State advantages & Disadvantages of binary search. 

13. Explain Binary search tree. 

14. What is the recurrence relation for divide & conquer? 

15. Explain Decrease & Conquer. 

16. What are the variations of Decrease & Conquer? 

17. What are the applications of decrease by constant? 

18. Write any four advantages of insertion sort. 

19. What is Greedy method? 

20. Compare Greedy algorithm & Dynamic programming. 

21. Define Knapsack‘s problem. 
 

 

 

PART-B 

 

1. Explain Quick sort algorithm with suitable Example. (16) 

2. (a) Write an algorithm to sort a set of ‗N‘ numbers using insertion sort. (8) 

(b) Expalin the difference between depth first search & Breadth first 

search.(8) 

3. (a) Write a pseudo code for divide & conquer algorithm for merging two 

sorted arrays in to a single sorted one. Explain with example. (12) 

(b) Set up & solve a recurrence relation for the number of key comparisons 

made by above pseudo code. (4) 
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4. Design a recursive Decrease-by-one algorithm for sorting the n real 

numbers in any array with an example & also determine the number of key 

comparisons & time efficiency of the algorithm. (16) 

5. (a) Give an algorithm for selection sort & analyze your algorithm. (10) 

(b) Give Strength & Weakness of Brute force algorithm. (6) 

 

 . 
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UNIT III DYNAMIC PROGRAMMING 

 

Dynamic programming – General method – Multistage graphs – All-pair shortest paths – 

Optimal binary search trees – 0/1 Knapsack – Traveling salesperson problem 

 

3.1. DYNAMIC PROGRAMMING 

Dynamic programming is a technique for solving problems with overlapping subproblems. 

Typically, these subproblems arise from a recurrence relating a solution to a given problem 

with solutions to its smaller subproblems of the same type. Rather than solving overlapping 

subproblems again and again, dynamic programming suggests solving each of the smaller 

subproblems only once and recording the results in a table from which we can then obtain a 

solution to the original problem. 

 

E.g.  Fibonacci Numbers 

0,1,1,2,3,5,8,13,21,34,..., 

which can be defined by the simple recurrence 

F(0) = 0, F(1)=1. 

and two initial conditions 

F(n) = F(n-1) + F(n-2) for n ≥ 2 

 

3.2.  GENERAL METHOD -  

 COMPUTING A BINOMIAL COEFFICIENT 

 

Computing a binomial coefficient is a standard example of applying dynamic programming 

to a nonoptimization problem.  

 

 
 

Of the numerous properties of binomial coefficients, we concentrate on two: 

C(n,k) = C(n-1,k-1) + C(n-1,k) for n > k > 0  and 

C(n, 0) = C(n, n) = 1.  

 

3.2.1. Pseudocode for Binomial Coefficient  
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3.3. MULTISTAGE GRAPHS –  

ALL PAIR SHORTESET PATH - FLOYD’S ALGORITHM 

Given a weighted connected graph (undirected or directed), the all-pair shortest paths 

problem asks to find the distances (the lengths of the shortest paths) from each vertex to all 

other vertices. It is convenient to record the lengths of shortest paths in an n-by-n matrix D 

called the distance matrix: the element dij in the ith row and the jth column of this matrix 

indicates the length of the shortest path from the ith vertex to the jth vertex (1≤ i,j ≤ n). We 

can generate the distance matrix with an algorithm called Floyd’s algorithm. It is 

applicable to both undirected and directed weighted graphs provided that they do not 

contain a cycle of a negative length. 

 

 
Fig: (a) Digraph. (b) Its weight matrix. (c) Its distance matrix. 

Floyd‘s algorithm computes the distance matrix of a weighted graph with vertices through 

a series of n-by-n matrices: 

 
Each of these matrices contains the lengths of shortest paths with certain constraints on the 

paths considered for the matrix. Specifically, the element in the ith row and the jth 

column of matrix D (k=0,1,. . . ,n) is equal to the length of the shortest path among all paths 

from the ith vertex to the jth vertex with each intermediate vertex, if any, numbered not 

higher than k. In particular, the series starts with D
(0)

, which does not allow any 

intermediate vertices in its paths; hence, D
(0)

 is nothing but the weight matrix of the graph. 

The last matrix in the series, D
(n)

, contains the lengths of the shortest paths among all paths 
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that can use all n vertices as intermediate and hence is nothing but the distance matrix 

being sought. 

 

 
Fig: Underlying idea of Floyd’s algorithm 

 

 
3.3.1. Pseudocode for Floyd’s Algorithms 
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Fig: Application of Floyd’s algorithm to the graph shown. Updated elements are 

shown in bold. 
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3.4. OPTIMAL BINARY SEARCH TREES 

A binary search tree‗s principal application is to implement a dictionary, a set of elements 

with the operations of searching, insertion, and deletion. 

 

In an optimal binary search tree, the average number of comparisons in a search is the 

smallest possible.  

 

 

 

Fig: Two out of 14 possible binary search trees with keys A, B, C. and D 

 

 

As an example, consider four keys A, B, C, and D to be searched for with probabilities 0.1, 

0.2, 0.4, and 0.3, respectively. The above figure depicts two out of 14 possible binary 

search trees containing these keys. The average number of comparisons in a successful 

search in the first of this trees is 0.1∙1 + 0.2∙2 + 0.4∙3 + 0.3∙4 =2.9 while for the second one 

it is 0.1∙2+0.2∙1 +0.4∙2+0.3∙3 = 2.1. Neither of these two trees is, in fact, optimal.  

 

For this example, we could find the optimal tree by generating all 14 binary search trees 

with these keys. As a general algorithm, this exhaustive search approach is unrealistic: the 

total number of binary search trees with n keys is equal to the nth Catalan number 

 

 
 

which grows to infinity as fast as 4
n
/n

1.5
.  

 

 

If we count tree levels starting with 1 (to make the comparison numbers equal the keys 

levels), the following recurrence relation is obtained: 
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Thus, we have the recurrence 

 

 

 
 

 

 

 
 

Fig: Binary search tree with root ak and  

two optimal binary search subtrees  and   
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Fig:  Table of the dynamic programming algorithm for constructing an optimal 

binary search tree 

 

EXAMPLE 1:  Let us illustrate the algorithm by applying it to the four-key set. 

Key  A  B  C  D 

Probability  0.1 0.2  0.4  0.3 

 

 

The initial tables look like this: 

 
 

Let us compute C[1, 2]: 

 
 

 

Thus, out of two possible binary trees containing the first two keys, A and B, the root of the 

optimal tree has index 2 (i.e., it contains B), and the average number of comparisons in a 

successful search in this tree is 0.4. 
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Thus, the average number of key comparisons in the optimal tree is equal to 1.7. Since R[1, 

4] = 3, the root of the optimal three contains the third key, i.e., C. Its left subtree is made up 

of keys A and B, and its right subtree contains just key D.  

 

To find the specific structure of these subtrees, we find first their roots by consulting the 

root table again as follows. Since R[1, 2] = 2, the root of the optima] tree containing A and 

B is B, with A being its left child (and the root of the one-node tree: R[1, 1] = 1). Since 

R[4, 4] = 4, the root of this one-node optimal tree is its only key V. The following figure 

presents the optimal tree in its entirety. 

 

 
Figure: Optimal binary search tree for the example 

 

Pseudocode of the dynamic programming algorithm 
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3.5.  0/1 KNAPSACK PROBLEM 

Let i be the highest-numbered item in an optimal solution S for W pounds. Then S` = S - {i} 

is an optimal solution for W - wi pounds and the value to the solution S is Vi plus the value 

of the subproblem. 

 

We can express this fact in the following formula: define c[i, w] to be the solution for 

items  1,2, . . . , i and maximum weight w. Then 

  

  0  if i = 0 or w = 0 

c[i,w]  

= 
c[i-1, w]  if wi ≥ 0 

  
max [vi + c[i-1, w-wi], c[i-1, 

w]}  

if i>0 and w ≥  

wi 

  

 

This says that the value of the solution to i items either include i
th

 item, in which case it is vi 

plus a subproblem solution for (i - 1) items and the weight excluding wi, or does not include 

i
th

 item, in which case it is a subproblem's solution for (i - 1) items and the same weight.  

 

 

That is, if the thief picks item i, thief takes vi value, and thief can choose from items w - wi, 

and get c[i - 1, w - wi] additional value. On other hand, if thief decides not to take item i, 

thief can choose from item 1,2, . . . , i- 1 upto the weight limit w, and get c[i - 1, w] value. 

The better of these two choices should be made. 

 

 

Although the 0-1 knapsack problem, the above formula for c is similar to LCS formula: 

boundary values are 0, and other values are computed from the input and "earlier" values of 

c. So the 0-1 knapsack algorithm is like the LCS-length algorithm given in CLR for finding 

a longest common subsequence of two sequences. 

 

The algorithm takes as input the maximum weight W, the number of items n, and the two 

sequences v = <v1, v2, . . . , vn> and w = <w1, w2, . . . , wn>. It stores the c[i, j] values in the 

table, that is, a two dimensional array, c[0 . . n, 0 . . w] whose entries are computed in a 

row-major order. That is, the first row of c is filled in from left to right, then the second 

row, and so on. At the end of the computation, c[n, w] contains the maximum value that 

can be picked into the knapsack. 
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dynamic-0-1-knapsack (v, w, n, w) 

for w = 0 to w 

    do  c[0, w] = 0 

for i=1 to n 

    do c[i, 0] = 0 

        for w=1 to w 

            do iff wi ≤ w 

                then if  vi + c[i-1, w-wi] 

                    then c[i, w] = vi + c[i-1, w-wi] 

                    else c[i, w] = c[i-1, w] 

                else 

                    c[i, w] = c[i-1, w] 

  

The set of items to take can be deduced from the table, starting at c[n. w] and tracing 

backwards where the optimal values came from. If c[i, w] = c[i-1, w] item i is not part of 

the solution, and we are continue tracing with c[i-1, w]. Otherwise item i is part of the 

solution, and we continue tracing with c[i-1, w-W]. 

  

Analysis 

This dynamic-0-1-kanpsack algorithm takes θ(nw) times, broken up as follows: θ(nw) times 

to fill the c-table, which has (n +1).(w +1) entries, each requiring θ(1) time to compute. 

O(n) time to trace the solution, because the tracing process starts in row n of the table and 

moves up 1 row at each step. 

 

3.6. TRAVELING SALESMAN PROBLEM 

We will be able to apply the dynamic programming technique to instances of the traveling 

salesman problem, if we come up with a reasonable lower bound on tour lengths.  

 

One very simple lower bound can be obtained by finding the smallest element in the 

intercity distance matrix D and multiplying it by the number of cities it. But there is a less 

obvious and more informative lower bound, which does not require a lot of work to 

compute.  

It is not difficult to show that we can compute a lower bound on the length I of any tour as 

follows.  

 

For each city i, 1 ≤ i ≤ n, find the sum si of the distances from city i to the two nearest 

cities; compute the sums of these n numbers; divide the result by 2, and, it all the distances 

are integers, round up the result to the nearest integer: 
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lb=S/2 

 

 

 

 

 
Fig:  (a) Weighted graph.  

b) State-space tree of the branch-and- bound algorithm applied to this graph.  

(The list of vertices in a node specifies a beginning part of the  

Hamiltonian circuits represented by the node.) 

 

 

For example, for the instance of the above figure, formula yields  

lb =  [(1 + 3) + (3 + 6) + (1 + 2) + (3 + 4) + (2 + 3)] /2 = 14. 

 

We now apply the branch and bound algorithm, with the bounding function given by 

formula, to find the shortest Hamiltonian circuit for the graph of the above figure (a). To 

reduce the amount of potential work, we take advantage of two observations.  

 

First, without loss of generality, we can consider only tours that start at a.  

 

Second, because our graph is undirected, we can generate only tours in which b is visited 

before c. In addition, after visiting n-1 = 4 cities, a tour has no choice but to visit the 

remaining unvisited city and return to the starting one. The state-space tree tracing the 

algorithm‘s application is given in the above figure (b). 

 

The comments we made at the end of the preceding section about the strengths and 

weaknesses of backtracking are applicable to branch-and-bound as well. To reiterate the 
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main point: these state-space tree techniques enable us to solve many large instances of 

difficult combinatorial problems.  

 

As a rule, however, it is virtually impossible to predict which instances will be solvable in a 

realistic amount of time and which will not. 

 

Incorporation of additional information, such as symmetry of a game‘s board, can widen 

the range of solvable instances. Along this line, a branch-and- bound algorithm can be 

sometimes accelerated by knowledge of the objective function‘s value of some nontrivial 

feasible solution.  

 

The information might be obtainable—say, by exploiting specifics of the data or even, for 

some problems, generated randomly—before we start developing a state-space tree. Then 

we can use such a solution immediately as the best one seen so far rather than waiting for 

the branch-and-bound processing to lead us to the first feasible solution. 

 

In contrast to backtracking, solving a problem by branch-and-bound ha both the challenge 

and opportunity of choosing an order of node generation and finding a good bounding 

function.  

 

Though the best-first rule we used above is a sensible approach, it mayor may not lead to a 

solution faster than other strategies. 
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IMPORTANT QUESTIONS 
 

 

PART A 

 
1. Define dynamic programming. 

2. What are the multistage of graphs? 

3. What are all the shortest paths in binary search? 

4.  Define Binary Search. 

5.  What are the applications of binary search? 

6. State advantages & Disadvantages of binary search. 

7. Explain Binary search tree. 

8. What are the two types of searching algorithm? 

9. Define the Following Terms: 

(i) Tree Edge 

(ii) Back Edge 

(iii) Cross Edge 

10. State the following terms: 

(i) Balanced Tree 

(ii) Unbalanced Tree 

11. What is height of balanced tree? 

12. What is balance factor? 

13. Define rotation. 
 

 

PART B 

 

1Solve the all pair shortest path problem for the diagraph with the 

weighted matrix given below:- 

a b c d 

a 0 ∞ 3 ∞            

b 2 0 ∞ ∞ 

c ∞ 7 0 1 

d 6 ∞ ∞ 0 
 

2.Define AVL tree.Explain the construction sequence of AVL tree with 

simple example. 

3 (a) Give an algorithm for selection sort & analyze your algorithm. (10) 

(b) Give Strength & Weakness of Brute force algorithm. (6) 
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4 . Give a suitable example & explain the Breadth first search & 

Depth first search. (16) 

 

5. Find the number of comparisons made by the sentinel version 

of sequential search algorithm for in, 

(i)Worst case 

(ii)Average case (16) 
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UNIT IV BACKTRACKING 

Backtracking – General method – 8 Queens Problem – Sum of subsets – Graph coloring – 

Hamiltonian problem – Knapsack problem 

 

4.1. BACKTRACKING 

 

Many problems are difficult to solve algorithmically. Backtracking makes it possible to 

solve at least some large instances of difficult combinatorial problems.  

 

4.1.1.. GENERAL METHOD 

 The principal idea is to construct solutions one component at a time and evaluate 

such partially constructed candidates as follows.  

 If a partially constructed solution can be developed further without violating the 

problem‘s constraints, it is done by taking the first remaining legitimate option for 

the next component.  

 If there is no legitimate option for the next component, no alternatives for any 

remaining component need to be considered. In this case, the algorithm backtracks 

to replace the last component of the partially constructed solution with its next 

option. 

 

4.1.2. STATE-SPACE TREE 

It is convenient to implement this kind of processing by constructing a tree of choices being 

made, called the state-space tree. Its root represents an initial state before the search for a 

solution begins. The nodes of the first level in the tree represent the choices made for the 

first component of a solution; the nodes of the second level represent the choices for the 

second component, and so on.   

 

A node in a state-space tree is said to be promising if it corresponds to a partially 

constructed solution that may still lead to a complete solution; otherwise, it is called 

nonpromising.  

 

Leaves represent either nonpromising dead ends or complete solutions found by the 

algorithm. 

 

 

4.2. N-QUEENS PROBLEM 

 

The problem is to place it queens on an n-by-n chessboard so that no two queens attack 

each other by being in the same row or in the same column or on the same diagonal. For n 

= 1, the problem has a trivial solution, and it is easy to see that there is no solution for n = 2 
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and n =3. So let us consider the four-queens problem and solve it by the backtracking 

technique. Since each of the four queens has to be placed in its own row, all we need to do 

is to assign a column for each queen on the board presented in the following figure. 

 

 
Fig: Board for the Four-queens problem 

 

Steps to be followed 

 We start with the empty board and then place queen 1 in the first possible position of its 

row, which is in column 1 of row 1.  

 Then we place queen 2, after trying unsuccessfully columns 1 and 2, in the first 

acceptable position for it, which is square (2,3), the square in row 2 and column 3. This 

proves to be a dead end because there i no acceptable position for queen 3. So, the 

algorithm backtracks and puts queen 2 in the next possible position at (2,4).  

 Then queen 3 is placed at (3,2), which proves to be another dead end.  

 The algorithm then backtracks all the way to queen 1 and moves it to (1,2). Queen 2 

then goes to (2,4), queen 3 to (3,1), and queen 4 to (4,3), which is a solution to the 

problem.  

 

The state-space tree of this search is given in the following figure. 
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Fig: State-space tree of solving the four-queens problem by back tracking. 

(x denotes an unsuccessful attempt to place a queen in the indicated column. 

The numbers above the nodes indicate the order in which the nodes are generated) 

If other solutions need to be found, the algorithm can simply resume its operations at the 

leaf at which it stopped. Alternatively, we can use the board‘s symmetry for this purpose. 

 

4.3. SUBSET-SUM PROBLEM 

Subset-Sum Problem is finding a subset of a given set S = {s1,s2….sn} of n positive 

integers whose sum is equal to a given positive integer d.  

For example, for S = {1, 2, 5, 6, 8) and d = 9, there are two solutions: {1, 2, 6} and {1, 8}. 

Of course, some instances of this problem may have no solutions.  

It is convenient to sort the set‘s elements in increasing order. So we will assume that  

s1 ≤ s2 ≤ ……. ≤ sn 

 The state-space tree can be constructed as a binary tree as that in the following figure 

for the instances S = (3, 5, 6, 7) and d = 15.  

 The root of the tree represents the starting point, with no decisions about the given 

elements made as yet.  

 Its left and right children represent, respectively, inclusion and exclusion ofs1 in a set 

being sought.  

 Similarly, going to the left from a node of the first level corresponds to inclusion of s2, 

while going to the right corresponds to its exclusion, and soon.  

 

 Thus, a path from the root to a node on the ith level of the tree indicates which of the 

first i numbers have been included in the subsets represented by that node. 

 We record the value of s‘ the sum of these numbers, in the node, Ifs is equal to d. we 

have a solution to the problem.  
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 We can either, report this result and stop or, if all the solutions need to he found, 

continue by backtracking to the node‘s parent.  

 

 If s‘ is not equal to d, we can terminate the node as nonpromising if either of the two 

inequalities holds: 

 

 

 
 

 

4.3.1. Pseudocode For Backtrack Algorithms 
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Fig: Complete state-space tree of the backtracking algorithm 

 

(applied to the instance S = (3, 5, 6, 7) and d = 15 of the subset-sum problem. The number 

inside a node is the sum of the elements already included in subsets represented by the 

node. The inequality below a leaf indicates the reason for its termination) 

 

4.4. GRAPH COLORING 

A coloring of a graph is  an assignment of a color to each vertex of the graph so that no two 

vertices connected by an edge have the same color. It is not hard to see that our problem is 

one of coloring the graph of incompatible turns using as few colors as possible. 

 

The problem of coloring graphs has been studied for many decades, and the theory of  

algorithms tells us a lot about this problem. Unfortunately, coloring an arbitrary graph with 

as few colors as possible is one of a large class of problems called "NP-complete 

problems," for which all known solutions are essentially of the type "try all possibilities." 

 

A k-coloring of an undirected graph G = (V, E) is a function c : V → {1, 2,..., k} such that 

c(u) ≠ c(v) for every edge (u, v)  E. In other words, the numbers 1, 2,..., k represent the k 

colors, and adjacent vertices must have different colors. The graph-coloring problem is to 

determine the minimum number of colors needed to color a given graph.  

 

a. Give an efficient algorithm to determine a 2-coloring of a graph if one 

exists.  
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b. Cast the graph-coloring problem as a decision problem. Show that your 

decision problem is solvable in polynomial time if and only if the graph-

coloring problem is solvable in polynomial time.  

c. Let the language 3-COLOR be the set of graphs that can be 3-colored. Show 

that if 3-COLOR is NP-complete, then your decision problem from part (b) 

is NP-complete.  

 

To prove that 3-COLOR is NP-complete, we use a reduction from 3-CNF-

SAT. Given a formula φ of m clauses on n variables x, x,..., x, we construct 

a graph G = (V, E) as follows.  

 

The set V consists of a vertex for each variable, a vertex for the negation of 

each variable, 5 vertices for each clause, and 3 special vertices: TRUE, 

FALSE, and RED. The edges of the graph are of two types: "literal" edges 

that are independent of the clauses and "clause" edges that depend on the 

clauses. The literal edges form a triangle on the special vertices and also 

form a triangle on x, ¬x, and RED for i = 1, 2,..., n.   

 

d. Argue that in any 3-coloring c of a graph containing the literal edges, 

exactly one of a variable and its negation is colored c(TRUE) and the other 

is colored c(FALSE).  

Argue that for any truth assignment for φ, there is a 3-coloring of the graph 

containing  just the literal edges.  

 

The widget is used to enforce the condition corresponding to a clause (x  y  z). Each clause 

requires a unique copy of the 5 vertices that are heavily shaded; they connect as shown to 

the literals of the clause and the special vertex TRUE.  

 

e. Argue that if each of x, y, and z is colored c(TRUE) or c(FALSE), then the 

widget is 3-colorable if and only if at least one of x, y, or z is colored 

c(TRUE).  

 

f. Complete the proof that 3-COLOR is NP-complete. 
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Fig: The widget corresponding to a clause (x  y  z), used in Problem 

 

 

4.5. HAMILTONIAN CIRCUIT PROBLEM 

As our next example, let us consider the problem of finding a Hamiltonian circuit in the 

graph of Figure 11.3a. Without loss of generality, we can assume that if a Hamiltonian 

circuit exists, it starts at vertex a. Accordingly, we make vertex a the root of the state-space 

tree (Figure 11.3b).  

 

The first component of our future solution, if it exists, is a first intermediate vertex of a 

Hamiltonian cycle to be constructed. Using the alphabet order to break the three-way tie 

among the vertices adjacent to a, we select vertex b. From b, the algorithm proceeds to c, 

then to d, then to e, and finally to f, which proves to be a dead end. So the algorithm 

backtracks from f to e, then to d. and then to c, which provides the first alternative for the 

algorithm to pursue.  

 

Going from c to e eventually proves useless, and the algorithm has to backtrack from e to c 

and then to b. From there, it goes to the vertices f, e, c, and d, from which it can 

legitimately return to a, yielding the Hamiltonian circuit a, b, f, e, c, d, a. If we wanted to 

find another Hamiltonian circuit, we could continue this process by backtracking from the 

leaf of the solution found. 

 

 
Figure 11.3: (a) Graph. (b) State-space tree for finding a Hamiltonian circuit. The 

numbers above the nodes of the tree indicate the order in which the nodes are 

generated. 
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4.6. KNAPSACK PROBLEM 

The knapsack problem or rucksack problem is a problem in combinatorial optimization: 

Given a set of items, each with a weight and a value, determine the number of each item to 

include in a collection so that the total weight is less than a given limit and the total value is 

as large as possible.  

 

It derives its name from the problem faced by someone who is constrained by a fixed-size 

knapsack and must fill it with the most useful items. 

 

The problem often arises in resource allocation with financial constraints. A similar 

problem also appears in combinatorics, complexity theory, cryptography and applied 

mathematics. 

 

The decision problem form of the knapsack problem is the question "can a value of at least 

V be achieved without exceeding the weight W?" 

 

E.g. A thief enters a store and sees the following items: 

 

 

 

His Knapsack holds 4 pounds. 

What should he steal to maximize profit? 

 

Fractional Knapsack Problem 

Thief can take a fraction of an item. 

 

$100 

$10 $120 

2 pd 2 pd 

3 pd 

A B C 
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0-1 Knapsack Problem 

Thief can only take or leave item. He can‘t take a fraction. 

 
Fractional Knapsack has a greedy solution 

Sort items by decreasing cost per pound 

 

Solution = 3 pounds of item C 

3 pds 

C 

$120 

 

  2 pounds of item A 

  2 pounds of item C 

2 pds 

A 

$100 

2 pds 

C 

$80 

Solution =  + 
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If knapsack holds k=5 pds, solution is: 

      1 pds A 

      3 pds B 

      1 pds C 

General Algorithm-O(n): 

Given: 

weight w1 w2 … wn 

cost c1 c2 … cn 

 

Knapsack weight limit K 

1. Calculate vi = ci / wi for i = 1, 2, …, n 

2. Sort the item by decreasing vi 

3. Find j, s.t. 

w1 + w2 +…+ wj  k < w1 + w2 +…+ wj+1 

Answer is 
{ wi pds item i, for i  j 

K-ij wi pds item j+1 

 

200 

140 

 

240 

 

 
150 

cost 

weight 

A 

B 

C 

D 

1 

pd 

3 

pd 

2 

pd 

5 

pd 

30 70 80 200 

www.geitcse.tk



CS1252-DAA   

  

 

65 

IMPORTANT QUESTIONS 
PART-A 

 

1. Define Backtracking. 

2. What are the applications of backtracking? 

3. What are the algorithm design techniques? 

4. Define n-queens problem. 

5. Define Hamiltonian Circuit problem. 

6. Define sum of subset problem. 

7. What is state space tree? 

8. Define Branch & Bound method. 

9. Define assignment problem. 

10. What is promising & non-promising node? 

11. Define Knapsack‘s problem. 

12. Define Travelling salesman problem. 

13. State principle of backtracking. 

14. Compare Backtracking & Branch and Bound techniques with an example. 

15. What are the applications of branch & bound?(or) What are the examples 

of branch & bound? 

16.In Backtracking method,how the problem can be categorized? 

17.How should be determine the solution in backtracking algorithm? 

18.Obtain all possible solutions to 4-Queen‘s problem. 

19.Generate atleast 3-solutions for 5-Queen‘s problem. 

20.Draw a pruned state space tree for a given sum of subset problem: 

S={3,4,5,6} and d=13 

 

PART-B: 

1. Explain the n-Queen‘s problem & discuss the possible solutions. (16) 

2. Solve the following instance of the knapsack problem by the branch & 

bound algorithm. (16) 

3. Discuss the solution for Travelling salesman problem using branch & 

bound technique. (16) 

4. Apply backtracking technique to solve the following instance  of subset 

sum problem : S={1,3,4,5} and d=11 (16) 

5. Explain subset sum problem & discuss the possible solution strategies using 

backtracking. (16) 
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UNIT V TRAVERSALS, BRANCH AND BOUND 

 

Graph traversals – Connected components – Spanning trees – Biconnected components – 

Branch and Bound – General methods (FIFO and LC) – 0/1 Knapsack problem – 

Introduction to NP-hard and NP-completeness 

 
5.1. GRAPH TRAVERSALS - BREADTH FIRST SEARCH 

 

 WORKING PRINCIPLE: 

1. It starts from the arbitrary vertex 

2. It visits all vertices adjacent to starting  vertex. 

3. Then all unvisited vertices between two edjes apart from it. 

      4.   If there still remain unvisited vertices, the algorithm has to be restarted at an 

arbitrary  vertex of another connected component of the graph.  

 

♦ Queue is used to trace BFS.  

 

♦ The queue is initialized with the traversal's starting vertex, which is marked as visited. ♦ 

On each iteration, the algorithm identifies all unvisited vertices that are adjacent to the front 

vertex, marks them as visited, and adds them to the queue; after that, the front vertex is 

removed from the queue.  

 

5.1.1. BREADTH FIRST SEARCH FOREST 

♦ Similarly to a DFS traversal, it is useful to accompany a BFS traversal by constructing 

the so-called breadth-first search forest.  

1. The traversal's starting vertex serves as the root of the first tree in such a forest.        

2. New unvisited vertex is reached for the first time, the vertex is attached as a child to 

 the vertex it is being reached from with an edge called a tree edge. 

3.  If an edge leading to a previously visited vertex other than its immediate 

predecessor (i.e., its parent in the tree) is encountered, the edge is noted as a cross 

edge.  

 

♦ Here is a pseudo code of the breadth-first search.  

 

ALGORITHM BFS(G)  

//Implements a breadth-first search traversal of a given graph 

 //Input: Graph G = (V, E)  

//Output: Graph G with its vertices marked with consecutive integers in the order they 

have been visited by the BFS traversal mark each vertex in V with 0 as a mark of being 
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"unvisited"  

count   0  

for each vertex v in V do  

if v is marked with 0  

bfs(v)  

bfs(v)  

//visits all the unvisited vertices connected to vertex v and assigns them the numbers in 

the order they are visited via global variable count  

count  count + 1; mark v with count and initialize a queue with v  

while the queue is not empty do  

      for each vertex w in V adjacent to the front's vertex v do  

    if w is marked with 0  

    count  count + 1; mark w with count add w to the queue  

      remove vertex v from the front of the queue  

 

5.1.2. EFFICIENCY 

♦ Breadth-first search has the same efficiency as depth-first search:  

♦ BFS can be used to check the connectivity and acyclicity of a graph as same as DFS. 

 for the adjacency linked list representation.  

 

5.1.3. ORDERING OF VERTICES 

♦ It yields a single ordering of vertices because the queue is a FIFO (first-in first-out) 

structure, and hence the order in which vertices are added to the queue is the same order in 

which they are removed from it. 

♦ As to the structure of a BFS forest, it can also have two kinds of edges: tree edges and 

cross edges. Tree edges are the ones used to reach previously unvisited vertices. Cross 

edges connect vertices to those visited before but, unlike back edges in a DFS tree, they 

connect either siblings or cousins on the same or adjacent levels of a BFS tree.  

 

5.1.4. APPLICATION OF BFS 

♦ Finally, BFS can be used to  

♦ Check connectivity and acydicity of a graph 

♦ BFS can be used for finding a path with the fewest number of edges between two given 

vertices. 

♦ This figure explains the BFS algorithm to find the minimum edge path. 
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(a) (b) 

 

a) Graph. (b) Part of its BFS tree that identifies the minimum-edge path from a to g.  

 

5.1.5. PROCEDURE TO FIND THE FEWEST NUMBER OF EDGES BETWEEN 

TWO VERTICES: 

 

♦ Start a BFS traversal at one of the given edge 

♦ Stop it as soon as the other vertex is reached. 

♦ For example, path a-b-e-g in the graph has the fewest number of edges among all 

the paths between  

 

5.2. DEPTH FIRST SEARCH 

 WORKING PRINCIPLE  

♦ Depth-first search starts visiting vertices of a graph at an arbitrary vertex by marking 

it as having been visited.  

♦ On each iteration, the algorithm proceeds to an unvisited vertex that is adjacent to the 

one it is currently in.  

♦ The algorithm stops, when there is no unvisited adjacent unvisited vertex. 

♦ At a dead end, the algorithm backs up one edge to the vertex it came from and tries to 

continue visiting unvisited vertices from there. 

♦ The algorithm eventually halts, when there is no unvisited unvisited vertex. 

♦ Stack is used totrace the operation of depth-first search. 

♦  Push a vertex onto the stack when the vertex is reached for the first time (i.e., the 

visit of the vertex starts), and pop a vertex off the stack when it becomes a dead end 

(i.e., the visit of the vertex ends).  

 

5.2.1. DEPTH FIRST SEARCH FOREST 

♦ It is also very useful to accompany a depth-first search traversal by constructing the so 

called depth-first search forest. 
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♦  The traversal's starting vertex serves as the root of the first tree in such a forest. 

Whenever a new unvisited vertex is reached for the first time, it is attached as a child to the 

vertex from which it is being reached. Such an edge is called a tree edge because the set of 

all such edges forms a forest.  

♦ The algorithm may also encounter an edge leading to a previously visited vertex other 

than its immediate predecessor (i.e., its parent in the tree). Such an edge is called a back 

edge because it connects a vertex to its ancestor, other than the parent, in the depth-first 

search forest.  
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♦ Here is a pseudo code of the depth-first search.  

 

5.2.2. ALGORITHM  DFS(G) 

 

Algorithm  Dfs(G) 

//Implements a depth-first search traversal of a given graph  

//Input: Graph G = (V, E)  

//0utput: Graph G with its vertices marked with consecutive integers  in the 

order they've been first encountered by the DFS traversal mark each vertex in V 

with 0 as a mark of being "unvisited"  

count  0  

for each vertex v in V do 

 if v is marked with 0  

dfs (v)  

dfs(v)  

//visits recursively all the unvisited vertices connected to vertex v and assigns 

them the numbers in the order they are encountered via global variable count  

count count + 1; mark v with count 

for each vertex w in V adjacent to v do  

      if w is marked with 0  

       dfs(w) 

 

                                            
                              (a)                                                  (c)  (d)  

    
                         (b)        

 

Fig: Example of a DFS traversal 

(a) Graph. (b) Traversal's stack (the first subscript number indicates the order in which 

a vertex was visited, i.e., pushed onto the stack; the second one indicates the order in 
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which it became a dead-end, i.e., popped off the stack). (c) DFS forest (with the tree 

edges shown with solid lines and the back edges shown with dashed lines). 

 

♦ A DFS traversal itself and the forest-like representation of a graph it provides have 

proved to be extremely helpful for the development of efficient algorithms for checking 

many important properties of graphs. 

 

♦ DFS yields two orderings of vertices:  

1. The order in which the vertices are reached for the first time (pushed onto the stack)  

2. The order in which the vertices become dead ends (popped off the stack). 

These orders are qualitatively different, and various applications can take advantage of 

either of them.  

 

5.2.3. APPLICATIONS OF DFS 

♦ DFS is used for 

♦ Checking connectivity of the graph 

♦ Checking a cyclicity of a graph. 

Checking connectivity of the graph 

♦  Checking a graph's connectivity can be done as follows. 

♦ Start a DFS traversal at an arbitrary vertex 

♦ Check, after the algorithm halts, whether all the graph's vertices will have been 

visited. 

♦ If they have, the graph is connected; otherwise, it is not connected 

Checking a cyclicity of a graph 

♦ If there is a back edge  in DFS forest , then the graph is acyclic. 

♦ If there is a back edge,from some vertex u to its ancestor v (e.g., the back edge 

from d to a in Figure 5.5c), the graph has a cycle that comprises the path from :J to u 

via a sequence of tree edges in the DFS forest followed by the back edge from u to 

v.  

 

Articulation point 

♦ A vertex of a connected graph is said to be its articulation point if its removal with all 

edges incident to it breaks the graph into disjoint pieces. 

 

5.3. CONNECTED COMPONENT   

A connected component  of a graph  G  is a maximal connected induced subgraph, that is, a  

connected induced subgraph that is not itself a proper subgraph of any other  connected 

subgraph of  G 
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A graph and one of its subgraphs. 

 

The above Figure is a connected graph. It has only one connected component,  namely 

itself. Following figure  is a graph with two connected components. 

 
An unconnected graph. 

 

5.3.1. BICONNECTED COMPONENTS 

 

An  articulation point  of a graph is a vertex  v  such that when we remove v  and all  edges  

incident upon v , we break a connected component of the graph into two or  more pieces. 

 

A connected graph with no articulation points is said to be biconnected. Depth-first search 

is particularly useful in finding the biconnected components of a graph. 

 

The problem of finding articulation points is the simplest of many important problems 

concerning the connectivity of graphs. As an example of applications of  connectivity 

algorithms, we may represent a communication network as a graph in  which the vertices 

are sites to be kept in communication with one another.  

 

A graph has connectivity k if the deletion of any k-1 vertices fails to disconnect the graph. 

For example, a graph has connectivity two or more if and only if it has no articulation 

points, that is, if and only if it is biconnected.  

 

The higher the connectivity of a graph, the more likely the graph is to survive the failure of 

some of its vertices, whether by failure of the processing units at the vertices or external 

attack. 

 

We shall here give a simple depth-first search algorithm to find all the articulation points of 

a connected graph, and thereby test by their absence whether the graph is biconnected. 

 

1.  Perform a depth-first search of the graph, computing dfnumber [v] for each vertex v. In 

essence, dfnumber orders the vertices as in a preorder traversal of the depth-first spanning 

tree. 
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2.  For each vertex v, compute low [v], which is the smallest dfnumber of v or of any 

vertex w reachable from v by following down zero or more tree edges to a descendant x of 

v (x  may be  v) and then following a back edge (x, w). We compute low  [v] for all 

vertices v by visiting the vertices in a postorder traversal. When we process v, we have 

computed low [y] for every child y  of  v.  We take  low [v] to be the minimum of a.  

dfnumber [v],b.  dfnumber [z] for any vertex z  for which there is a back edge (v, z) and c.  

low [y] for any child y of v. 

 

Now we find the articulation points as follows. 

a.  The root is an articulation point if and only if it has two or more children. Since there 

are no cross edges, deletion of the root must disconnect the subtrees rooted at its children, 

as a disconnects {b, d, e} from {c, f, g} in Fig.. 

 

b.  A vertex v other than the root is an articulation point if and only if there is some child w 

of v such that low [w] ≥ dfnumber [v]. In this case, v disconnects w and its descendants 

from the rest of the graph. Conversely, if low [w] < dfnumber [v], then there must be a way 

to get from w  down the tree and back to a proper ancestor of v (the vertex whose dfnumber 

is low [w]), and therefore deletion of v does not disconnect w  or its descendants from the 

rest of the graph. 

 

5.4. SPANNING TREES 

A spanning tree  for  G  is a free tree that connects all the vertices in   V 

 

5.4.1. MINIMUM-COST SPANNING TREES 

Suppose G = (V, E) is a connected graph in which each edge (u, v) in E has a cost c(u, v) 

attached to it. The  cost  of a spanning tree is the sum of the costs of the edges in the tree.  

 

A typical application for minimum-cost spanning trees occurs in the design of 

communications networks. The vertices of a graph represent cities and the edges possible 

communications links between the cities. The cost associated with an edge represents the 

cost of selecting that link for the network. A minimum-cost spanning tree represents a 

communications network that connects all the cities at minimal cost. 

 

5.4.2. The MST Property 

There are several different ways to construct a minimum-cost spanning tree. Many of these 

methods use the following property of minimum-cost spanning trees, which we call the  

MST property 

 

 Let G = (V, E) be a connected graph with a cost function defined on the edges. Let U be 

some proper subset of the set of vertices V. If (u, v) is an edge of lowest cost such that u � 
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U and v ∈ V-U, then there is a minimum-cost spanning tree that includes (u, v) as an edge.       

The proof hat every minimum-cost spanning tree satisfies the MST property is not hard. 

Suppose to the contrary that there is no minimum-cost spanning tree for G that includes (u, 

v). Let T be any minimum-cost spanning tree for G. Adding (u, v) to T must introduce a 

cycle, since T is a free tree and therefore satisfies property (2) for free trees. This cycle 

involves edge (u, v). Thus, there must e another edge (u', v') in T such that u' ∈ U and v' ∈ 

V-U, as illustrated in Fig. 7.5. If not, there could be no way for the cycle to get from u to v 

without following the edge (u, v) a second time.       Deleting the edge (u', v') breaks the 

cycle and yields a spanning tree T' whose 

 

5.4.3. PRIM’S ALGORITHM 

Definition:  

A spanning tree of a connected graph is its connected acyclic subgraph (i.e., a tree) that 

contains all the vertices of the graph. A minimum spanning tree of a weighted connected 

graph is its spanning tree of the smallest weight, where the weight of a tree is defined as the 

sum of the weights on all its edges. The minimum spanning tree problem is the problem of 

finding a minimum spanning tree for a given weighted connected graph. 

 

 

Two serious difficulties to construct Minimum Spanning Tree 

1.  The number of spanning trees grows exponentially with the graph size (at least for 

dense graphs).  

2.  Generating all spanning trees for a given graph is not easy. 

 

 
Figure: Graph and its spanning trees; T1 is the Minimum Spanning Tree 

 

 

 Prim‘s algorithm constructs a minimum spanning tree through a sequence of expanding 

subtrees. The initial subtree in such a sequence consists of a single vertex selected 

arbitrarily from the set V of the graph‘s vertices.  

 

 On each iteration, we expand the current tree in the greedy manner by simply attaching 

to it the nearest vertex not in that tree. The algorithm stops after all the graph‘s vertices 

have been included in the tree being constructed.  
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 Since the algorithm expands a tree by exactly one vertex on each of its iterations, the 

total number of such iterations is n-1, where n is the number of vertices in the graph. 

The tree generated by the algorithm is obtained as the set of edges used for the tree 

expansions. 

 

 The nature of Prim‘s algorithm makes it necessary to provide each vertex not in the 

current tree with the information about the shortest edge connecting the vertex to a tree 

vertex.  

 

 We can provide such information by attaching two labels to a vertex: the name of the 

nearest tree vertex and the length (the weight) of the corresponding edge.  

 Vertices that are not adjacent to any of the tree vertices can be given the label 

indicating their ―infinite‖ distance to the tree vertices a null label for the name of the 

nearest tree vertex.  

 

 With such labels, finding the next vertex to be added to the current tree T = (VT, ET) 

become simple task of finding a vertex with the smallest distance label in the set V - 

VT. Ties can be broken arbitrarily. 

 

 After we have identified a vertex u* to be added to the tree, we need to perform two 

operations: 

o Move u* from the set V—VT to the set of tree vertices VT. 

o For each remaining vertex U in V—VT - that is connected to u* by a 

shorter edge than the u‘s current distance label, update its labels by u* 

and the weight of the edge between u* and u, respectively. 

 

Pseudocode of this algorithm 
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The following figure demonstrates the application of Prim‘s algorithm to a specific graph. 

 

 
Fig: Graph given to find minimum spanning tree 

 

 

Fig: Application of Prim’s algorithm 

 

www.geitcse.tk



CS1252-DAA   

  

 

77 

 

5.4.4. KRUSKAL’S ALGORITHM 

This is another greedy algorithm for the minimum spanning tree problem that also always 

yields an optimal solution. 

 

Kruskal‘s algorithm looks at a minimum spanning tree for a weighted connected graph G = 

{V, E} as an acyclic subgraph with |V|-1 edges for which the sum of the edge weights is 

the smallest. Consequently, the algorithm constructs a minimum spanning tree as an 

expanding sequence of subgraphs, which are always acyclic but are not necessarily 

connected on the intermediate stages of the algorithm. 

 

 
 

 

 The correctness of Kruskal‘s algorithm can be proved by repeating the essential steps of 

the proof of Prim‘s algorithm. The fact that ET is actually a tree in Prim‘s algorithm, but 

generally just an acyclic subgraph in Kruskal‘s algorithm turns out to be an obstacle 

that can be overcome.  

 

 Applying Prim‘s and Kruskal‘s algorithms to the same small graph by hand may create 

an impression that the latter is simpler than the former. This impression is wrong 

because, on each of its iterations, Kruskal‘s algorithm has to check whether the addition 

of the next edge to the edges already selected would create a cycle.  

 

 It is not difficult to see that a new cycle is created if and only if the new edge connects 

two vertices already connected by a path, i.e., if and only if the two vertices belong to 

the same connected component. Note also that each connected component of a 

subgraph generated by Kruskal‘s algorithm is a tree because it has no cycles. 
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Fig: Graph given to find minimum spanning tree 

 
Fig: Application of Kruskal’s algorithm 

 

5.5. BRANCH-AND-BOUND 

Backtracking is to cut off a branch of the problem‘s state-space tree as soon as we can 

deduce that it cannot lead to a solution.  

This idea can be strengthened further if we deal with an optimization problem, one that 

seeks to minimize or maximize an objective function, usually subject to some constraints.  

Note that in the standard terminology of optimization problems, a feasible solution is a 

point in the problem‘s search space that satisfies all the problem‘s constraints 

(e.g.  a Hamiltonian circuit in the traveling salesman problem,  
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a subset of items whose total weight does not exceed the knapsack‘s 

capacity),  

while an optimal solution is a feasible solution with the best value of the objective function 

(e.g., the shortest Hamiltonian circuit, the most valuable subset of items that fit the 

knapsack). 

 

Compared to backtracking, branch-and-bound requires two additional items. 

 A way to provide, for every node of a state-space tree, a bound on the best value of 

the objective functions on any solution that can be obtained by adding further 

components to the partial solution represented by the node 

 The value of the best solution seen so far 

 

5.6. GENERAL METHOD 

 If this information is available, we can compare a node‘s bound value with the 

value of the best solution seen so far:  

 if the bound value is not better than the best solution seen so far—i.e., not smaller 

for a minimization problem and not larger for a maximization problem—the node is 

nonpromising and can be terminated (some people say the branch is pruned) 

because no solution obtained from it can yield a better solution than the one already 

available. 

 

E.g. Termination of search path 

In general, we terminate a search path at the current node in a state-space tree of a branch-

and-bound algorithm for any one of the following three reasons: 

1. The value of the node‘s bound is not better than the value of the best solution seen 

so far. 

2. The node represents no feasible solutions because the constraints of the problem are 

already violated. 

3. The subset of feasible solutions represented by the node consists of a single point 

(and hence no further choices can be made)—in this case we compare the value of 

the objective function for this feasible solution with that of the best solution seen so 

far and update the latter with the former if the new solution is better. 

 

5.6.1. ASSIGNMENT PROBLEM 

Let us illustrate the branch-and-bound approach by applying it to the problem of assigning 

n people to n jobs. So that the total cost of the assignment is as small as possible.  

An instance of the assignment problem is specified by an n-by-n cost matrix C so that we 

can state the problem as follows:  

Select one element in each row of the matrix so that no two selected elements are in the 

same column and their sum is the smallest possible.  
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Demonstrate of solving this problem using the branch-and-bound 

This is done by considering the same small instance of the problem: 

 
To find a lower bound on the cost of an optimal selection without actually solving the 

problem, we can do several methods.  

For example, it is clear that the cost of any solution, including an optimal one, cannot be 

smaller than the sum of the smallest elements in each of the matrix‘s rows.  

For the instance here, this sum is 2 +3 + 1 + 4 = 10.  

 

It is important to stress that this is not the cost of any legitimate selection (3 and 1 came 

from the same column of the matrix); it is just a lower bound on the cost of any legitimate 

selection.  

 

We Can and will apply the same thinking to partially constructed solutions. For example, 

for any legitimate selection that selects 9 from the first row, the lower bound will be 9 + 3 

+ 1 + 4 = 17. 

 

 
Fig: Levels 0 and 1 of the state-space tree for the instance of the assignment problem 

(being solved with the best-first branch-and- bound algorithm. The number above a node 

shows the order in which the node was generated. A node‘s fields indicate the job number 

assigned to person a, and the lower bound value, lb for this node.) 

 

This problem deals with the order in which the tree‘s nodes will he generated. Rather than 

generating a single child of the last promising node as we did in backtracking, we wilt 

generate all the children of the most promising node among non-terminated leaves in the 

current tree. (Non-terminated, je., still promising, leaves are also called live.)  
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To find which of the nodes is most promising, we are comparing the lower bounds of the 

live node. It is sensible to consider a node with the best bound as most promising, although 

this does not, of course, preclude the possibility that an optimal solution will ultimately 

belong to a different branch of the state-space tree.  

 

This variation of the strategy is called the best-first branch-and-bound. Returning to the 

instance of the assignment problem given earlier, we start with the root that corresponds to 

no elements selected from the cost matrix. As the lower bound value for the root, denoted 

lb is 10.  

 

The nodes on the first level of the free correspond to four elements (jobs) in the first row of 

the matrix since they are each a potential selection for the first component of the solution. 

So we have four live leaves (nodes 1 through 4) that may contain an optimal solution. The 

most promising of them is node 2 because it has the smallest lower bound value.  

 

Following our best-first search strategy, we branch out from that node first by considering 

the three different ways of selecting an element from the second row and not in the second 

column—the three different jobs that can be assigned to person b. 

 

 
Figure: Levels 0, 1. and 2 of the state-space tree for the instance of the assignment 

problem 

(being solved with the best-first branch-and- bound algorithm) 

 

Of the six live leaves (nodes 1, 3, 4, 5, 6, and 7) that may contain an optimal solution, we 

again choose the one with the smallest lower bound, node 5.  

 

First, we consider selecting the third column‘s element from c‘s row (i.e., assigning person 

c to job 3); this leaves us with no choice but to select the element from the fourth column of 

d‘s row (assigning person d to job 4).  
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This yields leafs that corresponds to the feasible solution (a →2, b→1, c→3, d →4) with 

(he total cost of 13. Its sibling, node 9, corresponds to the feasible solution {a → 2, b →1, c 

→ 4, d → 3) with the total cost of 25, Since its cost is larger than the cost of the  solution 

represented by leafs, node 9 is simply terminated.  

 

Note that if its cost were smaller than 13. we would have to replace the information about 

the best solution seen so far with the data provided by this node. 

 

Now, as we inspect each of the live leaves of the last state-space tree (nodes 1, 3, 4, 6, and 

7 in the following figure), we discover that their lower bound values are not smaller than 13 

the value of the best selection seen so far (leaf 8).  

 

Hence we terminate all of them and recognize the solution represented by leaf 8 as the 

optima) solution to the problem. 

 

 
Figure: Complete state-space tree for the instance of the assignment problem 

(Solved with the best-first branch-and-bound algorithm) 

 

5.7. KNAPSACK PROBLEM 

Illustration  

Given n items of known weights wi and values vi, i = 1,2,..., n, and a knapsack of capacity 

W, find the most valuable subset of the items that fit in the knapsack. It is convenient to 

order the items of a given instance in descending order by their value-to-weight ratios.  

Then the first item gives the best payoff per weight unit and the last one gives the worst 

payoff per weight unit, with ties resolved arbitrarily: 
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It is natural to structure the state-space tree for this problem as a binary tree constructed as 

follows (following figure).  

Each node on the ith level of this tree, 0 ≤ i ≤ n, represents all the subsets of n items that 

include a particular selection made from the first i ordered items. This particular selection 

is uniquely determined by a path from the root to the node: a branch going to the left 

indicates the inclusion of the next item while the branch going to the right indicates its 

exclusion.  

We record the total weight w and the total value v of this selection in the node, along with 

some upper bound ub on the value of any subset that can be obtained by adding zero or 

more items to this selection. 

 

A simple way to compute the upper bound ub is to add to v, the total value of the items 

already selected, the product of the remaining capacity of the knapsack W - w and the best 

per unit payoff among the remaining items, which is vi+1/wi+1 : 

 
As a specific example, let us apply the branch-and-bound algorithm to die same instance of 

the knapsack problem.  

 
Fig: Knapsack Problem (The knapsacks capacity W is 10.) 

 

 

At the root of the state-space tree (in the following figure), no items have been selected as 

yet. Hence, both the total weight of the items already selected w and their total value v are 

equal to 0.  

 

The value of the upper bound computed by formula (ub=v+(W-w)(vi+1/wi+1) is $100. Node 

1, the left child of the root, represents the subsets that include item, 1.  

 

The total weight and value of the items already included are 4 and $40, respectively; the 

value of the upper bound is 40 + (10-4)*6 = $76. 
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Fig: State-space tree of the branch-and-bound algorithm for the instance of the 

knapsack problem 

 

 

Node 2 represents the subsets that do not include item 1.  

 

Accordingly, w = 0, v= $0, and ub=0+(10-0)*6=$60.  

 

Since node 1 has a larger upper bound than the upper bound of node 2, it is more promising 

for this maximization problem, and we branch from node 1 first. Its children—nodes 3 and 

4—represent subsets with item 1 and with and without item 2, respectively.  

 

Since the total weight w of every subset represented by node 3 exceeds the knapsack‘s 

capacity, node 3 can be terminated immediately. Node 4 has the same values of w and u as 

its parent; the upper bound ub is equal to 40 + (10-4)*5 = $70.  
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Selecting node 4 over node 2 for the next branching, we get nodes 5 and 6 by respectively 

including and excluding item 3. The total weights and values as well as the upper bounds 

for these nodes are computed in the same way as for the preceding nodes.  

 

 

Branching from node 5 yields node 7, represents no feasible solutions and node 8 that 

represents just a single subset {1, 3}.  

 

The remaining live nodes 2 and 6 have smaller upper-bound values than the value of the 

solution represented by node 8. Hence, both can be terminated making the subset {1, 3} of 

node 8 the optimal solution to the problem. 

 

Solving the knapsack problem by a branch-and-bound algorithm has a rather unusual 

characteristic.  

 

Typically, internal nodes of a state-space tree do not define a point of the problem‘s search 

space, because some of the solution‘s components remain undefined. For the knapsack 

problem, however, every node of the tree represents a subset of the items given.  

 

We can use this fact to update the information about the best subset seen so far after 

generating each new node in the tree. If we did this for the instance investigated above, we 

could have terminated nodes 2 & 6 before node 8 was generated because they both are 

inferior to the subset of value $65 of node 5. 

 

 

5.8. INTRODUCTION TO NP-HARD AND NP-COMPLETENESS 

P: the class of decision problems that are solvable in O(p(n)) time, where p(n) is a 

polynomial of problem‘s input size n  

Examples: 

b searching 

b element uniqueness 

b graph connectivity  

b graph acyclicity 

primality testing (finally proved in 2002) 

 

NP (nondeterministic polynomial): class of decision problems whose proposed solutions 

can be verified in polynomial time = solvable  by a nondeterministic polynomial algorithm  

 

A nondeterministic polynomial algorithm is an abstract two-stage procedure that: 

b generates a random string purported to solve the problem 

b checks whether this solution is correct in polynomial time 
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E.g. Problem: Is a boolean expression in its conjunctive normal form (CNF) satisfiable, i.e., 

are there values of its variables that makes it true? 

This problem is in NP.  Nondeterministic algorithm: 

b Guess truth assignment 

b Substitute the values into the CNF formula to see if it evaluates to true  

Example: (A | ¬B | ¬C) & (A | B) & (¬B | ¬D | E) & (¬D | ¬E)  

 

Truth assignments: 

A B C D E 

0  0  0  0  0 

    .   .   . 

1  1  1  1  1 

Checking phase: O(n)  

 

 

5.8.1. PROBLEMS ARE IN NP? 

b Hamiltonian circuit existence  

b Partition problem: Is it possible to partition a set of n integers into two disjoint 

subsets with the same sum? 

b Decision versions of TSP, knapsack problem, graph coloring, and many other 

combinatorial optimization problems.  (Few exceptions include: MST, shortest 

paths)  

b All the problems in P can also be solved in this manner (but no guessing is 

necessary), so we have:  

                     P  NP 

b Big question:  P = NP ?  

NP-complete

problem

NP problems

 

www.geitcse.tk



CS1252-DAA   

  

 

87 

 

 

NP Hard problem: 

– Most problems discussed are efficient (poly time) 

– An interesting set of hard problems: NP-complete. 

 

• A decision problem D is NP-complete if it‘s as hard as any problem in NP, i.e., 

 D is in NP 

 every problem in NP is polynomial-time reducible to D 

 

Cook’s theorem (1971): CNF-sat is NP-complete  

Other NP-complete problems obtained through polynomial-time reductions from a known 

NP-complete problem 

 

known

NP-complete

problem

NP problems

candidate

 f or  NP -

completeness

 

Fig: NP Problems 

 

Examples:  

TSP, knapsack, partition, graph-coloring and hundreds of other problems of combinatorial 

nature 

 

 P  = NP would imply that every problem in NP, including all NP-complete 

problems, could be solved in polynomial time 

 If a polynomial-time algorithm for just one NP-complete problem is discovered, 

then every problem in NP can be solved in polynomial time, i.e., P  = NP 

 Most but not all researchers believe that P  NP , i.e. P is a proper subset of NP  
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IMPORTANT QUESTIONS 
PART-A 

 

 

1. what is back tracking ? 

2. Define n-queen‘s problem. 

3. Define hamiltonian circuit problem 

4. what is subset-sum problem. 

5. Define branch and bound. 

6. Knapsack problem. 

7. Traveling salesman problem. 

 

PART-B 

 

1. Explain Graph traversals. 

2. Explain in detail about Knapsack problem. 

3. Explain traveling salesman problem with example. 
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