
CS1252-DAA

3

Contents:

S.No. Contents Page No.

 UNIT – I - Introduction

1.1 Introduction 5

1.2 Fundamentals of Analysis of Algorithm 6

1.2.1 Analysis of Framework 6

1.2.2 Measuring an input size 6

1.2.3 Units for measuring runtime 7

1.2.4 Worst case, Best case and Average case 7

1.2.5 Asymptotic Notations 10

1.3 An Example 15

1.4 Analysis of Linear Search 19

 Questions 22

 Total Hours 9

UNIT – II – Divide and Conquer, Greedy Method
2.1 Divide and Conquer 23

2.2 General Method – Divide and Conquer 24

2.2.1 Master theorem 24

2.2.2 Efficiency of Merge sort 27

2.3 Binary Search 28

2.3.1 Efficiency of Binary Search 30

2.4 Greedy Techniques 32

2.5 General Method – Greedy Method 32

2.5.1 Prim‘s Algorithm 32

2.6 Container Loading 34

2.6.1 Algorithm for Container Loading 37

2.7 Knapsack Problem 37

 Questions 39

 Total Hours 9

UNIT – III – Dynamic Programming
3.1 Introduction

41

3.2 General Method – Dynamic Programming 41

3.2.1 Pseudo code for Binomial Coefficient 41

3.3 Multistage Graphs 42

3.3.1 Pseudo code for Floyd‘s Algorithm 43

3.4 Optimal Binary Search trees 45

3.5 0/1 Knapsack Problem 49

3.6 Traveling Salesman Problem 50

 Questions 53

 Total Hours 9

UNIT – IV - Backtracking

4.1 Backtracking 55

4.1.1 General Method – Backtracking 55

4.1.2 State-Space tree 55

www.geitcse.tk

CS1252-DAA

4

4.2 N-queens Problem 55

4.3 Subset- Sum problem 57

4.3.1 Pseudo code for Backtracking Algorithms 58

4.4 Graph Coloring 59

4.5 Hamiltonian circuit problem 61

4.6 Knapsack Problem 63

 Questions 65

 Total Hours 9

UNIT – V – Traversals, Branch & Bound

5.1 Graph Traversals, BFS 66

5.1.1 BFS Forest 66

5.1.2 Efficiency 67

5.1.3 Ordering of Vertices 67

5.1.4 Application of BFS 67

5.2 DFS 67

5.2.1 DFS Forest 68

5.2.2 DFS Algorithm 69

5.1.3 Application of DFS 70

5.3 Connected Component 70

5.3.1 Biconnected Components 71

5.4 Spanning Trees 73

5.4.1 Prim‘s Algorithm 73

5.4.2 Kruskal‘s Algorithm 76

5.5 Branch & Bound 78

5.6 General Methods – FIFO & LC 79

5.7 Knapsack Problem 85

5.8 NP Hard & NP Completeness 86

 Questions 88

 Total Hours 9

www.geitcse.tk

Ram Prasad
Draft

CS1252-DAA

5

 UNIT - I ALGORITHM ANALYSIS

Algorithm analysis – Time space tradeoff – Asymptotic notations – Conditional asymptotic

notation – Removing condition from the conditional asymptotic notation – Properties of

Big-oh notation – Recurrence equations – Solving recurrence equations – Analysis of linear

search.

1.1 Introduction

An algorithm is a sequence of unambiguous instruction for solving a problem, for obtaining

a required output for any legitimate input in a finite amount of time.

Definition

“Algorithmic is more than the branch of computer science. It is the core of computer

science, and, in all fairness, can be said to be relevant it most of science, business and

technology”

Understanding of Algorithm

An algorithm is a sequence of unambiguous instruction for solving a problem, for obtaining

a required output for any legitimate input in a finite amount of time.

 Problem

 Algorithm

 Input Output

ALGORITHM DESIGN AND ANALYSIS PROCESS

“Computer”

www.geitcse.tk

CS1252-DAA

6

1.2 FUNDAMENTALS OF THE ANALYSIS OF ALGORITHM EFFICIENCY

1.2.1 ANALYSIS FRAME WORK

♦ there are two kinds of efficiency

♦ Time efficiency - indicates how fast an algorithm in question runs.

♦ Space efficiency - deals with the extra space the algorithm requires.

1.2.2 MEASURING AN INPUT SIZE

♦ An algorithm's efficiency as a function of some parameter n indicating the algorithm's

input size.

♦ In most cases, selecting such a parameter is quite straightforward.

♦ For example, it will be the size of the list for problems of sorting, searching, finding the

list's smallest element, and most other problems dealing with lists.

♦ For the problem of evaluating a polynomial p(x) = a n x
n
+ . . . + a 0 of degree n, it will

be the polynomial's degree or the number of its coefficients, which is larger by one than

its degree.

UNDERSTAND THE
PROBLEM

DECIDE ON:
COMPUTATIONAL
MEANS,
EXACT VS APPROXIMATE
SOLVING
DATA STRUCTURE(S)
ALG DESIGN TECHNIQUES

DESIGN THE ALGORITHM

PROVE CORRECTNESS

ANALYSE THE ALGORITHM

CODE THE ALGORITHM

www.geitcse.tk

CS1252-DAA

7

♦ There are situations, of course, where the choice of a parameter indicating an input size

does matter.

♦ Example - computing the product of two n-by-n matrices.

 ♦ There are two natural measures of size for this problem.

 ♦ The matrix order n.

♦ The total number of elements N in the matrices being multiplied.

♦ Since there is a simple formula relating these two measures, we can easily switch from

one to the other, but the answer about an algorithm's efficiency will be qualitatively

different depending on which of the two measures we use.

♦ The choice of an appropriate size metric can be influenced by operations of the

algorithm in question. For example, how should we measure an input's size for a spell-

checking algorithm? If the algorithm examines individual characters of its input, then

we should measure the size by the number of characters; if it works by processing

words, we should count their number in the input.

♦ We should make a special note about measuring size of inputs for algorithms involving

properties of numbers (e.g., checking whether a given integer n is prime).

♦ For such algorithms, computer scientists prefer measuring size by the number b of bits

in the n's binary representation:

b=log2n +1

♦ This metric usually gives a better idea about efficiency of algorithms in question.

1.2.3 UNITS FOR MEASURING RUN TIME:

♦ We can simply use some standard unit of time measurement-a second, a millisecond,

and so on-to measure the running time of a program implementing the algorithm.

♦ There are obvious drawbacks to such an approach. They are

♦ Dependence on the speed of a particular computer

♦ Dependence on the quality of a program implementing the algorithm

♦ The compiler used in generating the machine code

♦ The difficulty of clocking the actual running time of the program.

♦ Since we are in need to measure algorithm efficiency, we should have a metric that

does not depend on these extraneous factors.

♦ One possible approach is to count the number of times each of the algorithm's

operations is executed. This approach is both difficult and unnecessary.

♦ The main objective is to identify the most important operation of the algorithm, called

the basic operation, the operation contributing the most to the total running time, and

compute the number of times the basic operation is executed.

♦ As a rule, it is not difficult to identify the basic operation of an algorithm.

WORST CASE, BEST CASE AND AVERAGE CASE EFFICIENCES

♦ It is reasonable to measure an algorithm's efficiency as a function of a parameter

indicating the size of the algorithm's input.

www.geitcse.tk

CS1252-DAA

8

♦ But there are many algorithms for which running time depends not only on an input

size but also on the specifics of a particular input.

♦ Example, sequential search. This is a straightforward algorithm that searches for a

given item (some search key K) in a list of n elements by checking successive elements

of the list until either a match with the search key is found or the list is exhausted.

♦ Here is the algorithm's pseudo code, in which, for simplicity, a list is implemented as

an array. (It also assumes that the second condition A[i] i= K will not be checked if the

first one, which checks that the array's index does not exceed its upper bound, fails.)

ALGORITHM Sequential Search(A[0..n -1], K)

//Searches for a given value in a given array by sequential search

 //Input: An array A[0..n -1] and a search key K

//Output: Returns the index of the first element of A that matches K

 // or -1 ifthere are no matching elements

 i←0

 while i < n and A[i] ≠ K do

i←i+1

if i < n return i

else return -1

♦ Clearly, the running time of this algorithm can be quite different for the same list size

n.

Worst case efficiency

♦ The worst-case efficiency of an algorithm is its efficiency for the worst-case input of

size n, which is an input (or inputs) of size n for which the algorithm runs the longest

among all possible inputs of that size.

♦ In the worst case, when there are no matching elements or the first matching element

happens to be the last one on the list, the algorithm makes the largest number of key

comparisons among all possible inputs of size n:

 Cworst (n) = n.

♦ The way to determine is quite straightforward

♦ To analyze the algorithm to see what kind of inputs yield the largest value of the basic

operation's count C(n) among all possible inputs of size n and then compute this worst-

case value C worst (n)

♦ The worst-case analysis provides very important information about an algorithm's

efficiency by bounding its running time from above. In other words, it guarantees that

for any instance of size n, the running time will not exceed C worst (n) its running time

on the worst-case inputs.

www.geitcse.tk

CS1252-DAA

9

Best case Efficiency

♦ The best-case efficiency of an algorithm is its efficiency for the best-case input of size

n, which is an input (or inputs) of size n for which the algorithm runs the fastest among

all possible inputs of that size.

♦ We can analyze the best case efficiency as follows.

♦ First, determine the kind of inputs for which the count C (n) will be the smallest among

all possible inputs of size n. (Note that the best case does not mean the smallest input; it

means the input of size n for which the algorithm runs the fastest.)

♦ Then ascertain the value of C (n) on these most convenient inputs.

♦ Example- for sequential search, best-case inputs will be lists of size n with their first

elements equal to a search key; accordingly, Cbest(n) = 1.

♦ The analysis of the best-case efficiency is not nearly as important as that of the worst-

case efficiency.

♦ But it is not completely useless. For example, there is a sorting algorithm (insertion

sort) for which the best-case inputs are already sorted arrays on which the algorithm

works very fast.

♦ Thus, such an algorithm might well be the method of choice for applications dealing

with almost sorted arrays. And, of course, if the best-case efficiency of an algorithm is

unsatisfactory, we can immediately discard it without further analysis.

Average case efficiency

♦ It yields the information about an algorithm about an algorithm‘s behaviour on a

―typical‖ and ―random‖ input.

♦ To analyze the algorithm's average-case efficiency, we must make some assumptions

about possible inputs of size n.

♦ The investigation of the average case efficiency is considerably more difficult than

investigation of the worst case and best case efficiency.

♦ It involves dividing all instances of size n .into several classes so that for each instance

of the class the number of times the algorithm's basic operation is executed is the same.

♦ Then a probability distribution of inputs needs to be obtained or assumed so that the

expected value of the basic operation's count can then be derived.

The average number of key comparisions Cavg(n) can be computed as follows,

♦ let us consider again sequential search. The standard assumptions are,

♦ In the case of a successful search, the probability of the first match occurring in the ith

position of the list is pin for every i, and the number of comparisons made by the

algorithm in such a situation is obviously i.

♦ In the case of an unsuccessful search, the number of comparisons is n with the

probability of such a search being (1 - p). Therefore,

 p p p p

 Cavg(n) = [1 . — + 2. — + …. + i . — + ….. + n . —] + n .(1 - p)

 n n n n

 = p

 — [1 + 2 + 3 +…. + i +…. + n] + n (1 - p)

www.geitcse.tk

CS1252-DAA

10

 n

 = p n (n +1)

 — + n (1 - p)

 n 2

 p (n + 1)

 = + n (1 - p)

 2

♦ Example, if p = 1 (i.e., the search must be successful), the average number of key

comparisons made by sequential search is (n + 1) /2.

♦ If p = 0 (i.e., the search must be unsuccessful), the average number of key comparisons

will be n because the algorithm will inspect all n elements on all such inputs.

1.2.5 Asymptotic Notations

Step count is to compare time complexity of two programs that compute same function and

also to predict the growth in run time as instance characteristics changes. Determining

exact step count is difficult and not necessary also. Because the values are not exact

quantities. We need only comparative statements like c1n
2
 ≤ tp(n) ≤ c2n

2
.

For example, consider two programs with complexities c1n
2

+ c2n and c3n respectively. For

small values of n, complexity depend upon values of c1, c2 and c3. But there will also be an

n beyond which complexity of c3n is better than that of c1n
2

+ c2n.This value of n is called

break-even point. If this point is zero, c3n is always faster (or at least as fast). Common

asymptotic functions are given below.

Function Name

1 Constant

log n Logarithmic

n Linear

n log n n log n

n
2
 Quadratic

n
3
 Cubic

2
n
 Exponential

n! Factorial

Big ‘Oh’ Notation (O)

O(g(n)) = { f(n) : there exist positive constants c and n0 such that 0 ≤ f(n) ≤ cg(n) for all n ≥

n0 }

It is the upper bound of any function. Hence it denotes the worse case complexity of any

algorithm. We can represent it graphically as

www.geitcse.tk

CS1252-DAA

11

 Fig 1.1

Find the Big ‗Oh‘ for the following functions:

Linear Functions

Example 1.6

f(n) = 3n + 2

General form is f(n) ≤ cg(n)

When n ≥ 2, 3n + 2 ≤ 3n + n = 4n

Hence f(n) = O(n), here c = 4 and n0 = 2

When n ≥ 1, 3n + 2 ≤ 3n + 2n = 5n

Hence f(n) = O(n), here c = 5 and n0 = 1

Hence we can have different c,n0 pairs satisfying for a given function.

Example

f(n) = 3n + 3

When n ≥ 3, 3n + 3 ≤ 3n + n = 4n

Hence f(n) = O(n), here c = 4 and n0 = 3

Example

f(n) = 100n + 6

When n ≥ 6, 100n + 6 ≤ 100n + n = 101n

Hence f(n) = O(n), here c = 101 and n0 = 6

Quadratic Functions

Example 1.9

f(n) = 10n
2
 + 4n + 2

When n ≥ 2, 10n
2
 + 4n + 2 ≤ 10n

2
 + 5n

When n ≥ 5, 5n ≤ n
2
, 10n

2
 + 4n + 2 ≤ 10n

2
 + n

2
= 11n

2

Hence f(n) = O(n
2
), here c = 11 and n0 = 5

www.geitcse.tk

CS1252-DAA

12

Example 1.10

f(n) = 1000n
2
 + 100n - 6

f(n) ≤ 1000n
2
 + 100n for all values of n.

When n ≥ 100, 5n ≤ n
2
, f(n) ≤ 1000n

2
 + n

2
= 1001n

2

Hence f(n) = O(n
2
), here c = 1001 and n0 = 100

Exponential Functions

Example 1.11

f(n) = 6*2
n
 + n

2

When n ≥ 4, n
2
 ≤ 2

n

So f(n) ≤ 6*2
n
 + 2

n
= 7*2

n

Hence f(n) = O(2
n
), here c = 7 and n0 = 4

Constant Functions

Example 1.12

f(n) = 10

f(n) = O(1), because f(n) ≤ 10*1

Omega Notation (Ω)

Ω (g(n)) = { f(n) : there exist positive constants c and n0 such that 0 ≤ cg(n) ≤ f(n) for all n

≥ n0 }

It is the lower bound of any function. Hence it denotes the best case complexity of any

algorithm. We can represent it graphically as

Fig 1.2

Example 1.13

f(n) = 3n + 2

3n + 2 > 3n for all n.

Hence f(n) = Ω(n)

Similarly we can solve all the examples specified under Big ‗Oh‘.

www.geitcse.tk

CS1252-DAA

13

Theta Notation (Θ)

Θ(g(n)) = {f(n) : there exist positive constants c1,c2 and n0 such that c1g(n) ≤f(n) ≤c2g(n) for

all n ≥ n0 }

If f(n) = Θ(g(n)), all values of n right to n0 f(n) lies on or above c1g(n) and on or below

c2g(n). Hence it is asymptotic tight bound for f(n).

 Fig 1.3

Example 1.14

f(n) = 3n + 2

f(n) = Θ(n) because f(n) = O(n) , n ≥ 2.

Similarly we can solve all examples specified under Big‘Oh‘.

Little-O Notation

For non-negative functions, f(n) and g(n), f(n) is little o of g(n) if and only if f(n) = O(g(n)),

but f(n) ≠ Θ(g(n)). This is denoted as "f(n) = o(g(n))".

This represents a loose bounding version of Big O. g(n) bounds from the top, but it does

not bound the bottom.

Little Omega Notation

For non-negative functions, f(n) and g(n), f(n) is little omega of g(n) if and only if f(n) =

Ω(g(n)), but f(n) ≠ Θ(g(n)). This is denoted as "f(n) = ω(g(n))".

Much like Little Oh, this is the equivalent for Big Omega. g(n) is a loose lower boundary of

the function f(n); it bounds from the bottom, but not from the top.

Conditional asymptotic notation

Many algorithms are easier to analyse if initially we restrict our attention to instances

whose size satisfies a certain condition, such as being a power of 2. Consider, for example,

www.geitcse.tk

CS1252-DAA

14

the divide and conquer algorithm for multiplying large integers that we saw in the

Introduction. Let n be the size of the integers to be multiplied.

The algorithm proceeds directly if n = 1, which requires a microseconds for an appropriate

constant a. If n>1, the algorithm proceeds by multiplying four pairs of integers of size

n/2 (or three if we use the better algorithm).

Moreover, it takes a linear amount of time to carry out additional tasks. For simplicity, let

us say that the additional work takes at most bn microseconds for an appropriate constant b.

Properties of Big-Oh Notation

Generally, we use asymptotic notation as a convenient way to examine what can happen in

a function in the worst case or in the best case. For example, if you want to write a function

that searches through an array of numbers and returns the smallest one:

function find-min(array a[1..n])

 let j :=

 for i := 1 to n:

 j := min(j, a[i])

 repeat

 return j

end

Regardless of how big or small the array is, every time we run find-min, we have to

initialize the i and j integer variables and return j at the end. Therefore, we can just think of

those parts of the function as constant and ignore them.

So, how can we use asymptotic notation to discuss the find-min function? If we search

through an array with 87 elements, then the for loop iterates 87 times, even if the very first

element we hit turns out to be the minimum. Likewise, for n elements, the for loop iterates

n times. Therefore we say the function runs in time O(n).

function find-min-plus-max(array a[1..n])

 // First, find the smallest element in the array

 let j := ;

 for i := 1 to n:

 j := min(j, a[i])

 repeat

 let minim := j

 // Now, find the biggest element, add it to the smallest and

 j := ;

 for i := 1 to n:

 j := max(j, a[i])

 repeat

www.geitcse.tk

CS1252-DAA

15

 let maxim := j

 // return the sum of the two

 return minim + maxim;

end

What's the running time for find-min-plus-max? There are two for loops, that each iterate n

times, so the running time is clearly O(2n). Because 2 is a constant, we throw it away and

write the running time as O(n). Why can you do this? If you recall the definition of Big-O

notation, the function whose bound you're testing can be multiplied by some constant. If

f(x)=2x, we can see that if g(x) = x, then the Big-O condition holds. Thus O(2n) = O(n).

This rule is general for the various asymptotic notations.

Recurrence

When an algorithm contains a recursive call to itself, its running time can often be

described by a recurrence

Recurrence Equation

A recurrence relation is an equation that recursively defines a sequence. Each term of the

sequence is defined as a function of the preceding terms. A difference equation is a specific

type of recurrence relation.

An example of a recurrence relation is the logistic map:

1.3 Another Example: Fibonacci numbers

The Fibonacci numbers are defined using the linear recurrence relation

with seed values:

Explicitly, recurrence yields the equations:

etc.

www.geitcse.tk

http://en.wikipedia.org/wiki/Fibonacci_number

CS1252-DAA

16

We obtain the sequence of Fibonacci numbers which begins:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

It can be solved by methods described below yielding the closed form expression which

involve powers of the two roots of the characteristic polynomial t
2
 = t + 1; the generating

function of the sequence is the rational function t / (1 − t − t
2
).

Solving Recurrence Equation

i. substitution method

The substitution method for solving recurrences entails two steps:

1. Guess the form of the solution.

2. Use mathematical induction to find the constants and show that the solution

works. The name comes from the substitution of the guessed answer for the

function when the inductive hypothesis is applied to smaller values. This method is

powerful, but it obviously

can be applied only in cases when it is easy to guess the form of the answer. The

substitution method can be used to establish either upper or lower bounds on a

recurrence. As an example, let us determine an upper bound on the recurrence

which is similar to recurrences (4.2) and (4.3). We guess that the solution is T (n) = O(n lg

n).Our method is to prove that T (n) ≤ cn lg n for an appropriate choice of the constant c >

0. We start by assuming that this bound holds for ⌊n/2⌋, that is, that T (⌊n/2⌋) ≤ c ⌊n/2⌋

lg(⌊n/2⌋).

Substituting into the recurrence yields

www.geitcse.tk

http://en.wikipedia.org/wiki/Fibonacci_number#Closed_form_expression
http://en.wikipedia.org/wiki/Generating_function
http://en.wikipedia.org/wiki/Generating_function
http://en.wikipedia.org/wiki/Rational_function

CS1252-DAA

17

where the last step holds as long as c ≥ 1.

Mathematical induction now requires us to show that our solution holds for the boundary

conditions. Typically, we do so by showing that the boundary conditions are suitable as

base cases for the inductive proof. For the recurrence (4.4), we must show that we can

choose the constant c large enough so that the bound T(n) = cn lg n works for the boundary

conditions as well. This requirement can sometimes lead to problems. Let us assume, for

the sake of argument, that T (1) = 1 is the sole boundary condition of the recurrence. Then

for n = 1, the bound T (n) = cn lg n yields T (1) = c1 lg 1 = 0, which is at odds with T (1) =

1. Consequently, the base case of our inductive proof fails to hold.

This difficulty in proving an inductive hypothesis for a specific boundary condition can be

easily overcome. For example, in the recurrence (4.4), we take advantage of asymptotic

notation only requiring us to prove T (n) = cn lg n for n ≥ n0, where n0 is a constant of our

choosing. The idea is to remove the difficult boundary condition T (1) = 1 from

consideration

1. In the inductive proof.

 Observe that for n > 3, the recurrence does not depend directly on T

(1). Thus, we can replace T (1) by T (2) and T (3) as the base cases in the inductive proof,

letting n0 = 2. Note that we make a distinction between the base case of the recurrence (n =

1) and the base cases of the inductive proof (n = 2 and n = 3). We derive from the

recurrence that T (2) = 4 and T (3) = 5. The inductive proof that T (n) ≤ cn lg n for some

constant c ≥ 1 can now be completed by choosing c large enough so that T (2) ≤ c2 lg 2 and

T (3) ≤ c3 lg 3. As it turns out, any choice of c ≥ 2 suffices for the base cases of n = 2 and n

= 3 to hold. For most of the recurrences we shall examine, it is straightforward to extend

boundary conditions to make the inductive assumption work for small n.

2. The iteration method

The method of iterating a recurrence doesn't require us to guess the answer, but it may

require more algebra than the substitution method. The idea is to expand (iterate) the

recurrence and express it as a summation of terms dependent only on n and the initial

conditions. Techniques for evaluating summations can then be used to provide bounds on

the solution.

As an example, consider the recurrence

www.geitcse.tk

CS1252-DAA

18

T(n) = 3T(n/4) + n.

We iterate it as follows:

T(n) = n + 3T(n/4)

= n + 3 (n/4 + 3T(n/16))

= n + 3(n/4 + 3(n/16 + 3T(n/64)))

= n + 3 n/4 + 9 n/16 + 27T(n/64),

where n/4/4 = n/16 and n/16/4 = n/64 follow from the identity (2.4).

How far must we iterate the recurrence before we reach a boundary condition? The ith term

in the series is 3
i

n/4
i
. The iteration hits n = 1 when n/4

i
 = 1 or, equivalently, when i

exceeds log4 n. By continuing the iteration until this point and using the bound n/4
i
 n/4

i
,

we discover that the summation contains a decreasing geometric series:

3. The master method

The master method provides a "cookbook" method for solving recurrences of the form

where a ≥ 1 and b > 1 are constants and f (n) is an asymptotically positive function.

The master method requires memorization of three cases, but then the solution of

many recurrences can be determined quite easily, often without pencil and paper.

The recurrence (4.5) describes the running time of an algorithm that divides a

problem of size

n into a subproblems, each of size n/b, where a and b are positive constants. The a

subproblems are solved recursively, each in time T (n/b). The cost of dividing the

www.geitcse.tk

CS1252-DAA

19

problem and combining the results of the subproblems is described by the function

f (n). (That is, using the notation from Section 2.3.2, f(n) = D(n)+C(n).) For example,

the recurrence arising from the MERGE-SORT procedure has a = 2, b = 2, and f (n)

= Θ(n).

As a matter of technical correctness, the recurrence isn't actually well defined

because n/b might not be an integer. Replacing each of the a terms T (n/b) with

either T (⌊n/b⌋) or T (⌈n/b⌉) doesn't affect the asymptotic behavior of the

recurrence, however. We normally find it convenient, therefore, to omit the floor

and ceiling functions when writing divide-and- conquer recurrences of this form.

1.4 Analysis of Linear Search

Linear Search, as the name implies is a searching algorithm which obtains its result by

traversing a list of data items in a linear fashion. It will start at the beginning of a list, and

mosey on through until the desired element is found, or in some cases is not found. The

aspect of Linear Search which makes it inefficient in this respect is that if the element is not

in the list it will have to go through the entire list. As you can imagine this can be quite

cumbersome for lists of very large magnitude, keep this in mind as you contemplate how

and where to implement this algorithm. Of course conversely the best case for this would

be that the element one is searching for is the first element of the list, this will be elaborated

more so in the ―Analysis & Conclusion‖ section of this tutorial.

Linear Search Steps:

Step 1 - Does the item match the value I’m looking for?

Step 2 - If it does match return, you’ve found your item!

Step 3 - If it does not match advance and repeat the process.

Step 4 - Reached the end of the list and still no value found? Well obviously the item

is not in the list! Return -1 to signify you have not found your value.

As always, visual representations are a bit more clear and concise so let me present one for

you now. Imagine you have a random assortment of integers for this list:

Legend:

-The key is blue

-The current item is green.

-Checked items are red

Ok so here is our number set, my lucky number happens to be 7 so let‘s put this value as

the key, or the value in which we hope Linear Search can find. Notice the indexes of the

www.geitcse.tk

CS1252-DAA

20

array above each of the elements, meaning this has a size or length of 5. I digress let us

look at the first term at position 0. The value held here 3, which is not equal to 7. We move

on.

--0 1 2 3 4 5

[3 2 5 1 7 0]

So we hit position 0, on to position 1. The value 2 is held here. Hmm still not equal to 7.

We march on.

--0 1 2 3 4 5

[3 2 5 1 7 0]

Position 2 is next on the list, and sadly holds a 5, still not the number we‘re looking for.

Again we move up one.

--0 1 2 3 4 5

[3 2 5 1 7 0]

Now at index 3 we have value 1. Nice try but no cigar let‘s move forward yet again.

--0 1 2 3 4 5

[3 2 5 1 7 0]

Ah Ha! Position 4 is the one that has been harboring 7, we return the position in the array

which holds 7 and exit.

--0 1 2 3 4 5

[3 2 5 1 7 0]

As you can tell, the algorithm may work find for sets of small data but for incredibly large

data sets I don‘t think I have to convince you any further that this would just be down right

inefficient to use for exceeding large sets. Again keep in mind that Linear Search has its

place and it is not meant to be perfect but to mold to your situation that requires a search.

Also note that if we were looking for lets say 4 in our list above (4 is not in the set) we

would traverse through the entire list and exit empty handed. I intend to do a tutorial on

Binary Search which will give a much better solution to what we have here however it

requires a special case.

//linearSearch Function

int linearSearch(int data[], int length, int val) {

 for (int i = 0; i <= length; i++) {

 if (val == data[i]) {

 return i;

 }//end if

 }//end for

 return -1; //Value was not in the list

}//end linearSearch Function

Analysis & Conclusion

www.geitcse.tk

CS1252-DAA

21

As we have seen throughout this tutorial that Linear Search is certainly not the absolute

best method for searching but do not let this taint your view on the algorithm itself. People

are always attempting to better versions of current algorithms in an effort to make existing

ones more efficient. Not to mention that Linear Search as shown has its place and at the

very least is a great beginner‘s introduction into the world of searching algorithms. With

this is mind we progress to the asymptotic analysis of the Linear Search:

Worst Case:

The worse case for Linear Search is achieved if the element to be found is not in the list at

all. This would entail the algorithm to traverse the entire list and return nothing. Thus the

worst case running time is:

O(N).

Average Case:

The average case is in short revealed by insinuating that the average element would be

somewhere in the middle of the list or N/2. This does not change since we are dividing by a

constant factor here, so again the average case would be:

O(N).

Best Case:

The best case can be a reached if the element to be found is the first one in the list. This

would not have to do any traversing spare the first one giving this a constant time

complexity or:

O(1).

www.geitcse.tk

CS1252-DAA

22

IMPORTANT QUESTIONS

PART-A

1. Define Algorithm & Notion of algorithm.

2. What is analysis framework?

3. What are the algorithm design techniques?

4. How is an algorithm‘s time efficiency measured?

5. Mention any four classes of algorithm efficiency.

6. Define Order of Growth.

7. State the following Terms.

(i) Time Complexity

(ii) Space Complexity

8. What are the various asymptotic Notations?

9. What are the important problem types?

10. Define algorithmic Strategy (or) Algorithmic Technique.

11. What are the various algorithm strategies (or) algorithm Techniques?

12. What are the ways to specify an algorithm?

13. Define Best case Time Complexity .

14. Define Worst case Time Complexity.

15. Define Average case time complexity.

16. What are the Basic Efficiency Classes.

17. Define Asymptotic Notation.

18. How to calculate the GCD value?

PART-B

1. (a) Describe the steps in analyzing & coding an algorithm. (10)

(b) Explain some of the problem types used in the design of algorithm. (6)

2. (a) Discuss the fundamentals of analysis framework . (10)

(b) Explain the various asymptotic notations used in algorithm design. (6)

3. (a) Explain the general framework for analyzing the efficiency of algorithm. (8)

(b) Explain the various asymptotic efficiencies of an algorithm. (8)

4. (a) Explain the basic efficiency classes. (10)

(b) Explain briefly the concept of algorithmic strategies. (6)

5. Describe briefly the notions of complexity of an algorithm. (16)

6. (a) What is Pseudo-code? Explain with an example. (8)

(b) Find the complexity C(n) of the algorithm for the worst case, best case and average

case.(Evaluate average case complexity for n=3,Where n is the number of inputs) (8)

www.geitcse.tk

CS1252-DAA

23

UNIT II: DIVIDE AND CONQUER, GREEDY METHOD

Divide and conquer – General method – Binary search – Finding maximum and minimum

– Merge sort – Greedy algorithms – General method – Container loading – Knapsack

problem

2.1. DIVIDE AND CONQUER

Divide and Conquer is one of the best-known general algorithm design technique. Divide-

and-conquer algorithms work according to the following general plan:

2. The smaller instances are solved (typically recursively, though sometimes a different

algorithm is employed when instances become small enough).

3. If necessary, the solutions obtained for the smaller instances are combined

to get a solution to the original problem.

Problem of size n

Sub problem of
size n/2

Sub problem of
size n/2

Solution to sub problem 1 Solution to sub problem 2

Solution to the original
 problem

1. A problem's instance is divided into several smaller instances of the same problem,

ideally of about the same size.

The divide-and-conquer technique is diagrammed, which depicts the case of dividing a

problem into two smaller sub problems,

www.geitcse.tk

CS1252-DAA

24

Examples of divide and conquer method are Binary search, Quick sort,

2.2. GENERAL METHOD

e.g. Merge sort.

♦ As an example, let us consider the problem of computing the sum of n numbers a0, ... an-

1.

♦ If n > 1, we can divide the problem into two instances of the same problem. They are To

compute the sum of the first └ n/2┘numbers

♦ To compute the sum of the remaining [n/2]numbers. (Of course, if n = 1, we simply

return a0 as the answer.)

♦ Once each of these two sums is computed (by applying the same method, i.e.,

recursively),

we can add their values to get the sum in question. i.e.,

a0 + . . . + an-1 =(a0 ++ a└ n/2┘) + (a└ n/2┘ + + an-1)

♦ More generally, an instance of size n can be divided into several instances of size nib,

with a of them needing to be solved. (Here, a and b are constants; a≥1 and b > 1.).

♦ Assuming that size n is a power of b, to simplify our analysis, we get the following

recurrence for the running time T(n).

T(n)=aT(n/b)+f(n)

♦ This is called the general divide and-conquer recurrence. Where f(n) is a function that

accounts for the time spent on dividing the problem into smaller ones and on combining

their solutions. (For the summation example, a = b = 2 and f (n) = 1.

♦ Obviously, the order of growth of its solution T(n) depends on the values of the constants

a and b and the order of growth of the function f (n). The efficiency analysis of many

divide-and-conquer algorithms is greatly simplified by the following theorem.

2.2.1. MASTER THEOREM

 If f(n)   (n
d
) where d ≥ 0 in recurrence equation is given by ,

  (n
d
) if a < b

d

 T(n)   (n
d
 log n) if a = b

d

  (n
1ogb a

) if a > b
d

www.geitcse.tk

CS1252-DAA

25

(Analogous results hold for the O and Ω notations, too.)

♦ For example, the recurrence equation for the number of additions A(n) made by the

divide-and-conquer summation algorithm (see above) on inputs of size n = 2
k
 is

A(n) = 2A(n/2) + 1.

♦ Thus, for this example, a = 2, b = 2, and d = 0; hence, since a > b
d
,

A(n)   (n
1ogb a

) =  (n
1ogz

 2) =  (n).

ADVANTAGES:

♦ The time spent on executing the problem using divide and conquer is smaller then other

methods.

♦ The divide and conquer approach provides an efficient algorithm in computer science.

♦ The divide and conquer technique is ideally suited for parallel computation in which each

sub problem can be solved simultaneously by its own processor.

♦ Merge sort is a perfect example of a successful application of the divide-and conquer

technique.

♦ It sorts a given array Al O .. n - 1) by dividing it into two halves A [O··└ n/2┘ - 1] and A[└

n/2┘..n - 1], sorting each of them recursively, and then merging the two smaller sorted

arrays into a single sorted one.

ALGORITHM Mergesort (A[O .. n - 1])

//Sorts array A[O .. n - 1] by recursive mergesort

//Input: An array A[O .. n - 1] of orderable elements

//Output: Array A[O... n - 1] sorted in nondecreasing order

if n > 1

copy A [O··└ n/2┘ - 1] to B [O··└ n/2┘ - 1]

copy A[└ n/2┘..n - 1] to C[0...└ n/2┘ - 1]

Mergesort (B [O··└ n/2┘ - 1])

Mergesort (C[0...└ n/2┘ - 1])

Mergesort(B,C,A)

STEPS TO BE FOLLOWED

♦ The first step of the merge sort is to chop the list into two.

♦ If the list has even length, split the list into two equal sub lists.

♦ If the list has odd length, divide the list into two by making the first sub list one entry

greater than the second sub list.

♦ then split both the sub list into two and go on until each of the sub lists are of size one.

♦ finally, start merging the individual sub lists to obtain a sorted list.

www.geitcse.tk

CS1252-DAA

26

♦ The operation of the algorithm for the array of elements 8,3,2,9,7,1,5,4 is explained as

follows,

www.geitcse.tk

CS1252-DAA

27

AN EXAMPLE OF MERGE SORT OPEERATION

♦ The merging of two sorted arrays can be done as follows. Two pointers (array indices)

are initialized to point to the first elements of the arrays being merged.

♦ Then the elements pointed to are compared and the smaller of them is added to a new

array or list being constructed.

♦ Then the index of the smaller element is incremented to point to its immediate

successor in the array.

♦ This operation is continued until one of the two given arrays is exhausted

♦Then the remaining elements of the other array are copied to the end of the new

array.

ALGORITHM : Merge Sort B(0....p-1), C(0....q-1), A(0....p + q -1)

// Merges two sorted arrays into one sorted array .

// Input: Array B (0....p-1) and C (0....q-1) both sorted

//Output: Sorted array A (0....p + q -1) of the elements of B and C

i  0; j 0 ;k 0

while i<p and j<q do

if B[i] ≤ C[j]

A[k] B[i];i i+1

else A[k]  C[j] j j+1

k k+1

if i=p

copy C[j....q-1] to A[k....p+q-1]

else copy B[i....p-1] to A[k....p+q-1]

2.2.2 EFFICIENCY OF MERGE SORT

♦ The recurrence relation for the number of key comparison C (n) is

C (n) = 2 C (n/2) + Cmerge (n) for n>1, C (1) = 0

♦ Assume, n is a power of 2. Cmerge (n) is the number of key comparison performed during

the merge sort.

♦ In the merging of two sorted array after one comparison is made the total number of

elements in the two array still to be processed and sorted is reduced by one.

♦ Hence in the worst case neither of the two arrays becomes empty before the other one

contains just one element . Therefore, for the worst case,

C worst(n)=2 C worst(n / 2)+n-1 for n > 1, C worst(1)=0

Cmerge(n) = n – 1

and we have the recurrence

www.geitcse.tk

CS1252-DAA

28

Hence, according to the Master Theorem, C worst (n)   (n log n) . In fact, it is easy to find

the exact solution to the worst-case recurrence for n = 2
k

 C worst(n) = n log2 n - n + 1

2.3. BINARY SEARCH

♦ The binary search algorithm is one of the most efficient searching techniques which

require the list to be sorted in ascending order.

♦ To search for an element in the list, the binary search algorithms split the list and locate

the middle element of the list.

♦ The middle of the list is calculated as

Middle:=(l+r) div 2

n – number of element in list

♦ The algorithm works by comparing a search key element ‗k‘ with the array middle

element a[m]

After comparison, any one of the following three conditions occur.

1. If the search key element ‗k‘ is greater than a[m],then the search element is only in the

upper or second half and eliminate the element present in the lower half.Now the value

of l is middle m+1.

2. If the search key element ‗k‘ is less than a[m], then the search element is only in the

lower or first half. No need to check in the upper half. Now the value of r is middle m -

1.

3. If the search key element ‗k‘ is equal to a[m], then the search key element is found in

the position m. Hence the search operation is complete.

EXAMPLE:

The list of element are 3,14,27,31,39,42,55,70,74,81,85,93,98 and searching for k=70 in

the list.

index 0 1 2 3 4 5 6 7 8 9 10 11 12

 value l m r

m – middle element

m = n div 2

 =13 div 2

m = 6

If k>a[m], then ,l =7. So, the search element is present in second half .

www.geitcse.tk

CS1252-DAA

29

Now the array becomes

 7 8 9 10 11 12

l r

m = (l + r) div 2 = 19 div 2

m = 9

 7 8 9 10 11 12

l m r

Here k<a[m]

 70 < 81

So, the element is present in the first half

Now, the array becomes

 7 8

 l r

Now m = (l +r) div 2

 = (7 +8) div 2

 m = 7

 7 8

l,m r

Now k = a[m]

70 =70

70 74 93 81 85 98

70 74 93 81 85 98

70 74

70 74

www.geitcse.tk

CS1252-DAA

30

Hence, the search key element 70 is found in the position 7 and the search operation is

completed.

ALGORITHM: Binary search (A[0..n – 1],k)

//Implements nonrecursive binary search

// Input:: An array A[0..n – 1] sorted in ascending order and a search key k

// Output: An index of the array’s element that is equal to k or -1 if there is no

 // such element

l 0; r  n – 1

while l<= r do

 m  └(l + r)/ 2 ┘

 if k = A[m] return m

 else if k < A[m] r  m – 1

 else l  m+ 1

return -1

2.3.1. EFFICIENCY OF BINARY SEARCH

♦ The standard way to analyze the efficiency is to count number of times search key is

compared with an element of the array.

WORST CASE ANALYSIS

♦ The worst case include all array that do not contain a search key.

♦ The recurrence relation for Cworst(n) is

Cworst(n)=Cw(└ n/2┘) + 1 ,for n > 1 --------(1)

Cworst(1)=1

For n = 2
k

Equation (1) becomes

Cworst(2
k

) = k + 1

Cworst(2
k

) = log2 n + 1 -------(2)

n is positive integer,

Cworst(n

) = └log2 n ┘ +1 -------(3)

Cworst(n

) =└log2 (n +1)┘ -------(4)

In equation (1) put n = 2i.

L.H.S becomes

 Cworst(n

) = └log2 n ┘ + 1

 = └log22i┘ + 1

 = └og22 ┘+└ log2i ┘+ 1

www.geitcse.tk

CS1252-DAA

31

 = 1 + └log2i┘ + 1

 =2 +└ log2i┘

 Cworst(n

) =2 +└ log2i┘

R.H.S becomes

Cworst└ n

/ 2 ┘+ 1= Cworst└2i /2┘

 + 1

 =Cworst(i) + 1

 = log2i + 1 + 1

 = 2 +└ log2i┘

 Cworst└ n

/ 2┘ + 1 =2 +└ log2i┘

 L.H.S =R.H.S

Hence

 Cworst(n

) = └log2n ┘+ 1 and

 Cworst(i) = └log2i ┘+ 1 are same

Hence

 C worst (n) =  (log n)

From equation (4) to search a element in a array of 1000 elements ,binary search takes.

 └ log210
3
 ┘ + 1 = 10 key comparison

AVERAGE CASE ANALYSIS:

Average number of key comparison made by the binary search is slightly smaller than

worst case.

 Cavg (n) ≈ log2 n

The average number of comparison in the successful search is

 C
yes

avg (n) ≈ log2 n – 1

The average number of comparison in the unsuccessful search is

 C
no

avg (n) ≈ log2 (n + 1)

ADVANTAGES

1. In this method elements are eliminated by half each time .So it is very faster than the

sequential search.

2. It requires less number of comparisons than sequential search to locate the search key

element.

DISADVANTAGES

1. An insertion and deletion of a record requires many records in the existing table be

physically moved in order to maintain the records in sequential order.

2. The ratio between insertion/deletion and search time is very high.

www.geitcse.tk

CS1252-DAA

32

2.4. GREEDY TECHNIQUES

The greedy approach suggests constructing a solution through a sequence of steps, each

expanding a partially constructed solution obtained so far, until a complete solution to the

problem is reached. On each step—and this is the central point of this technique—the

choice made must be

• Feasible, i.e., it has to satisfy the problem‘s constraints.

• Locally optimal, i.e., it has to be the best local choice among all feasible

choices available on that step.

• Irrevocable, i.e., once made, it cannot be changed on subsequent steps of the

algorithm.

2.5. GENERAL METHOD

2.5.1. PRIM’S ALGORITHM

Definition:

A spanning tree of a connected graph is its connected acyclic subgraph (i.e., a tree) that

contains all the vertices of the graph. A minimum spanning tree of a weighted connected

graph is its spanning tree of the smallest weight, where the weight of a tree is defined as the

sum of the weights on all its edges. The minimum spanning tree problem is the problem of

finding a minimum spanning tree for a given weighted connected graph.

Two serious difficulties to construct Minimum Spanning Tree

1. The number of spanning trees grows exponentially with the graph size (at least for

dense graphs).

2. Generating all spanning trees for a given graph is not easy.

Figure: Graph and its spanning trees; T1 is the Minimum Spanning Tree

Prim‘s algorithm constructs a minimum spanning tree through a sequence of expanding

subtrees. The initial subtree in such a sequence consists of a single vertex selected

arbitrarily from the set V of the graph‘s vertices. On each iteration, we expand the current

tree in the greedy manner by simply attaching to it the nearest vertex not in that tree. The

algorithm stops after all the graph‘s vertices have been included in the tree being

constructed. Since the algorithm expands a tree by exactly one vertex on each of its

iterations, the total number of such iterations is n-1, where n is the number of vertices in the

www.geitcse.tk

CS1252-DAA

33

graph. The tree generated by the algorithm is obtained as the set of edges used for the tree

expansions.

Pseudocode of this algorithm

The nature of Prim‘s algorithm makes it necessary to provide each vertex not in the current

tree with the information about the shortest edge connecting the vertex to a tree vertex. We

can provide such information by attaching two labels to a vertex: the name of the nearest

tree vertex and the length (the weight) of the corresponding edge. Vertices that are not

adjacent to any of the tree vertices can be given the label indicating their ―infinite‖ distance

to the tree vertices a null label for the name of the nearest tree vertex. With such labels,

finding the next vertex to be added to the current tree T = (VT, ET) become simple task of

finding a vertex with the smallest distance label in the set V - VT. Ties can be broken

arbitrarily.

After we have identified a vertex u* to be added to the tree, we need to perform two

operations:

• Move u* from the set V—VT to the set of tree vertices VT.

• For each remaining vertex U in V—VT - that is connected to u* by a shorter edge than

the u‘s current distance label, update its labels by u* and the weight of the edge

between u* and u, respectively.

The following figure demonstrates the application of Prim‘s algorithm to a specific graph.

www.geitcse.tk

CS1252-DAA

34

Fig: Graph given to find minimum spanning tree

Fig: Application of Prim’s algorithm

2.6. CONTAINER LOADING

The greedy algorithm constructs the loading plan of a single container layer by layer from

the bottom up. At the initial stage, the list of available surfaces contains only the initial

surface of size L x W with its initial position at height 0. At each step, the algorithm picks

the lowest usable surface and then determines the box type to be packed onto the surface,

the number of the boxes and the rectangle area the boxes to be packed onto, by the

procedure select layer.

www.geitcse.tk

CS1252-DAA

35

The procedure select layer calculates a layer of boxes of the same type with the highest

evaluation value. The procedure select layer uses breadth-limited tree search heuristic to

determine the most promising layer, where the breadth is different depending on the

different depth level in the tree search. The advantage is that the number of nodes expanded

is polynomial to the maximal depth of the problem, instead of exponentially growing with

regard to the problem size. After packing the specified number of boxes onto the surface

according to the layer arrangement, the surface is divided into up to three sub-surfaces by

the procedure divide surfaces.

Then, the original surface is deleted from the list of available surfaces and the newly

generated sub-surfaces are inserted into the list. Then, the algorithm selects the new lowest

usable surface and repeats the above procedures until no surface is available or all the

boxes have been packed into the container. The algorithm follows a similar basic

framework.

The pseudo-code of the greedy algorithm is given by the greedy heuristic procedure.

procedure greedy heuristic()

list of surface := initial surface of L x W at height 0

list of box type := all box types

while (there exist usable surfaces) and (not all boxes are

packed) do

select the lowest usable surface as current surface

set depth := 0

set best layer := select layer(list of surface, list of box

type, depth)

pack best layer on current surface

reduce the number of the packed box type by the packed

amount

set a list of new surfaces := divide surfaces(current surface,

best layer, list of box type)

delete current surface from the list of surfaces

insert each surface in list of new surfaces into list of

surfaces

end while

www.geitcse.tk

CS1252-DAA

36

Fig: Division of the Loading Surface

Given a layer of boxes of the same type arranged by the G4-heuristic, the layer is always

packed in the bottom-left corner of the loading surface.

As illustrated in above Figure, up to three sub-surfaces are to be created from the original

loading surface by the procedure divide surfaces, including the top surface, which is above

the layer just packed, and the possible spaces that might be left at the sides.

If l = L or w = W, the original surface is simply divided into one or two sub-surfaces, the

top surface and a possible side surface. Otherwise, two possible division variants exist, i.e.,

to divide into the top surface, the surface (B,C,E,F) and the surface (F,G,H, I), or to divide

into the top surface, the surface (B,C,D, I) and the surface (D,E,G,H).

The divisions are done according to the following criteria, which are similar to those in [2]

and [5]. The primary criterion is to minimize the total unusable area of the division variant.

If none of the remaining boxes can be packed onto a sub-surface, the area of the sub-

surface is unusable. The secondary criterion is to avoid the creation of long narrow strips.

―The underlying rationale is that narrow areas might be difficult to fill subsequently‖. More

specifically, if L−l ≥ W −w, the loading surface is divided into the top surface, the surface

(B,C,E,F) and the surface (F,G,H, I). Otherwise, it is divided into the top surface, the

surface (B,C,D, I) and the surface (D,E,G,H).

2.6.1. Algorithm for Container Loading

www.geitcse.tk

CS1252-DAA

37

2.7. KNAPSACK PROBLEM

The knapsack problem or rucksack problem is a problem in combinatorial optimization:

Given a set of items, each with a weight and a value, determine the number of each item to

include in a collection so that the total weight is less than a given limit and the total value is

as large as possible. It derives its name from the problem faced by someone who is

constrained by a fixed-size knapsack and must fill it with the most useful items.

The problem often arises in resource allocation with financial constraints. A similar

problem also appears in combinatorics, complexity theory, cryptography and applied

mathematics.

The decision problem form of the knapsack problem is the question "can a value of at least

V be achieved without exceeding the weight W?"

E.g.

A thief enters a store and sees the following items:

www.geitcse.tk

CS1252-DAA

38

His Knapsack holds 4 pounds.

What should he steal to maximize profit?

Fractional Knapsack Problem

Thief can take a fraction of an item.

$100
$10

$120

2 pd 2 pd 3 pd

A

B
C

 2 pounds of item A

 2 pounds of item C

2 pds

A

$100

2 pds

C

$80

Solution = +

www.geitcse.tk

CS1252-DAA

39

IMPORTANT QUESTIONS
PART-A

1. Give the time efficiency & Drawback of merge sort Algorithm.

2. What is the difference between DFS & BFS?

3. What is the Brute Force Algorithmic Strategy?

4. State the time complexity of following:

(i) Bubble sort

(ii) Selection sort

(iii) Sequential search

(iv) Brute force string matching

5. What are the features of Brute force String matching algorithm?

6. Define ―Divide & Conquer Technique‖.

7. State Master‘s Theorem.

8. Define Merge sort & explain three steps of Merge sort.

9. Define Quick sort & explain three steps of Quick sort.

10. Define Binary Search.

11. What are the applications of binary search?

12. State advantages & Disadvantages of binary search.

13. Explain Binary search tree.

14. What is the recurrence relation for divide & conquer?

15. Explain Decrease & Conquer.

16. What are the variations of Decrease & Conquer?

17. What are the applications of decrease by constant?

18. Write any four advantages of insertion sort.

19. What is Greedy method?

20. Compare Greedy algorithm & Dynamic programming.

21. Define Knapsack‘s problem.

PART-B

1. Explain Quick sort algorithm with suitable Example. (16)

2. (a) Write an algorithm to sort a set of ‗N‘ numbers using insertion sort. (8)

(b) Expalin the difference between depth first search & Breadth first

search.(8)

3. (a) Write a pseudo code for divide & conquer algorithm for merging two

sorted arrays in to a single sorted one. Explain with example. (12)

(b) Set up & solve a recurrence relation for the number of key comparisons

made by above pseudo code. (4)

www.geitcse.tk

CS1252-DAA

40

4. Design a recursive Decrease-by-one algorithm for sorting the n real

numbers in any array with an example & also determine the number of key

comparisons & time efficiency of the algorithm. (16)

5. (a) Give an algorithm for selection sort & analyze your algorithm. (10)

(b) Give Strength & Weakness of Brute force algorithm. (6)

 .

www.geitcse.tk

CS1252-DAA

41

UNIT III DYNAMIC PROGRAMMING

Dynamic programming – General method – Multistage graphs – All-pair shortest paths –

Optimal binary search trees – 0/1 Knapsack – Traveling salesperson problem

3.1. DYNAMIC PROGRAMMING

Dynamic programming is a technique for solving problems with overlapping subproblems.

Typically, these subproblems arise from a recurrence relating a solution to a given problem

with solutions to its smaller subproblems of the same type. Rather than solving overlapping

subproblems again and again, dynamic programming suggests solving each of the smaller

subproblems only once and recording the results in a table from which we can then obtain a

solution to the original problem.

E.g. Fibonacci Numbers

0,1,1,2,3,5,8,13,21,34,...,

which can be defined by the simple recurrence

F(0) = 0, F(1)=1.

and two initial conditions

F(n) = F(n-1) + F(n-2) for n ≥ 2

3.2. GENERAL METHOD -

 COMPUTING A BINOMIAL COEFFICIENT

Computing a binomial coefficient is a standard example of applying dynamic programming

to a nonoptimization problem.

Of the numerous properties of binomial coefficients, we concentrate on two:

C(n,k) = C(n-1,k-1) + C(n-1,k) for n > k > 0 and

C(n, 0) = C(n, n) = 1.

3.2.1. Pseudocode for Binomial Coefficient

www.geitcse.tk

CS1252-DAA

42

3.3. MULTISTAGE GRAPHS –

ALL PAIR SHORTESET PATH - FLOYD’S ALGORITHM

Given a weighted connected graph (undirected or directed), the all-pair shortest paths

problem asks to find the distances (the lengths of the shortest paths) from each vertex to all

other vertices. It is convenient to record the lengths of shortest paths in an n-by-n matrix D

called the distance matrix: the element dij in the ith row and the jth column of this matrix

indicates the length of the shortest path from the ith vertex to the jth vertex (1≤ i,j ≤ n). We

can generate the distance matrix with an algorithm called Floyd’s algorithm. It is

applicable to both undirected and directed weighted graphs provided that they do not

contain a cycle of a negative length.

Fig: (a) Digraph. (b) Its weight matrix. (c) Its distance matrix.

Floyd‘s algorithm computes the distance matrix of a weighted graph with vertices through

a series of n-by-n matrices:

Each of these matrices contains the lengths of shortest paths with certain constraints on the

paths considered for the matrix. Specifically, the element in the ith row and the jth

column of matrix D (k=0,1,. . . ,n) is equal to the length of the shortest path among all paths

from the ith vertex to the jth vertex with each intermediate vertex, if any, numbered not

higher than k. In particular, the series starts with D
(0)

, which does not allow any

intermediate vertices in its paths; hence, D
(0)

 is nothing but the weight matrix of the graph.

The last matrix in the series, D
(n)

, contains the lengths of the shortest paths among all paths

www.geitcse.tk

CS1252-DAA

43

that can use all n vertices as intermediate and hence is nothing but the distance matrix

being sought.

Fig: Underlying idea of Floyd’s algorithm

3.3.1. Pseudocode for Floyd’s Algorithms

www.geitcse.tk

CS1252-DAA

44

Fig: Application of Floyd’s algorithm to the graph shown. Updated elements are

shown in bold.

www.geitcse.tk

CS1252-DAA

45

3.4. OPTIMAL BINARY SEARCH TREES

A binary search tree‗s principal application is to implement a dictionary, a set of elements

with the operations of searching, insertion, and deletion.

In an optimal binary search tree, the average number of comparisons in a search is the

smallest possible.

Fig: Two out of 14 possible binary search trees with keys A, B, C. and D

As an example, consider four keys A, B, C, and D to be searched for with probabilities 0.1,

0.2, 0.4, and 0.3, respectively. The above figure depicts two out of 14 possible binary

search trees containing these keys. The average number of comparisons in a successful

search in the first of this trees is 0.1∙1 + 0.2∙2 + 0.4∙3 + 0.3∙4 =2.9 while for the second one

it is 0.1∙2+0.2∙1 +0.4∙2+0.3∙3 = 2.1. Neither of these two trees is, in fact, optimal.

For this example, we could find the optimal tree by generating all 14 binary search trees

with these keys. As a general algorithm, this exhaustive search approach is unrealistic: the

total number of binary search trees with n keys is equal to the nth Catalan number

which grows to infinity as fast as 4
n
/n

1.5
.

If we count tree levels starting with 1 (to make the comparison numbers equal the keys

levels), the following recurrence relation is obtained:

www.geitcse.tk

CS1252-DAA

46

Thus, we have the recurrence

Fig: Binary search tree with root ak and

two optimal binary search subtrees and

www.geitcse.tk

CS1252-DAA

47

Fig: Table of the dynamic programming algorithm for constructing an optimal

binary search tree

EXAMPLE 1: Let us illustrate the algorithm by applying it to the four-key set.

Key A B C D

Probability 0.1 0.2 0.4 0.3

The initial tables look like this:

Let us compute C[1, 2]:

Thus, out of two possible binary trees containing the first two keys, A and B, the root of the

optimal tree has index 2 (i.e., it contains B), and the average number of comparisons in a

successful search in this tree is 0.4.

www.geitcse.tk

CS1252-DAA

48

Thus, the average number of key comparisons in the optimal tree is equal to 1.7. Since R[1,

4] = 3, the root of the optimal three contains the third key, i.e., C. Its left subtree is made up

of keys A and B, and its right subtree contains just key D.

To find the specific structure of these subtrees, we find first their roots by consulting the

root table again as follows. Since R[1, 2] = 2, the root of the optima] tree containing A and

B is B, with A being its left child (and the root of the one-node tree: R[1, 1] = 1). Since

R[4, 4] = 4, the root of this one-node optimal tree is its only key V. The following figure

presents the optimal tree in its entirety.

Figure: Optimal binary search tree for the example

Pseudocode of the dynamic programming algorithm

www.geitcse.tk

CS1252-DAA

49

3.5. 0/1 KNAPSACK PROBLEM

Let i be the highest-numbered item in an optimal solution S for W pounds. Then S` = S - {i}

is an optimal solution for W - wi pounds and the value to the solution S is Vi plus the value

of the subproblem.

We can express this fact in the following formula: define c[i, w] to be the solution for

items 1,2, . . . , i and maximum weight w. Then

 0 if i = 0 or w = 0

c[i,w]

=
c[i-1, w] if wi ≥ 0

max [vi + c[i-1, w-wi], c[i-1,

w]}

if i>0 and w ≥

wi

This says that the value of the solution to i items either include i
th

 item, in which case it is vi

plus a subproblem solution for (i - 1) items and the weight excluding wi, or does not include

i
th

 item, in which case it is a subproblem's solution for (i - 1) items and the same weight.

That is, if the thief picks item i, thief takes vi value, and thief can choose from items w - wi,

and get c[i - 1, w - wi] additional value. On other hand, if thief decides not to take item i,

thief can choose from item 1,2, . . . , i- 1 upto the weight limit w, and get c[i - 1, w] value.

The better of these two choices should be made.

Although the 0-1 knapsack problem, the above formula for c is similar to LCS formula:

boundary values are 0, and other values are computed from the input and "earlier" values of

c. So the 0-1 knapsack algorithm is like the LCS-length algorithm given in CLR for finding

a longest common subsequence of two sequences.

The algorithm takes as input the maximum weight W, the number of items n, and the two

sequences v = <v1, v2, . . . , vn> and w = <w1, w2, . . . , wn>. It stores the c[i, j] values in the

table, that is, a two dimensional array, c[0 . . n, 0 . . w] whose entries are computed in a

row-major order. That is, the first row of c is filled in from left to right, then the second

row, and so on. At the end of the computation, c[n, w] contains the maximum value that

can be picked into the knapsack.

www.geitcse.tk

CS1252-DAA

50

dynamic-0-1-knapsack (v, w, n, w)

for w = 0 to w

 do c[0, w] = 0

for i=1 to n

 do c[i, 0] = 0

 for w=1 to w

 do iff wi ≤ w

 then if vi + c[i-1, w-wi]

 then c[i, w] = vi + c[i-1, w-wi]

 else c[i, w] = c[i-1, w]

 else

 c[i, w] = c[i-1, w]

The set of items to take can be deduced from the table, starting at c[n. w] and tracing

backwards where the optimal values came from. If c[i, w] = c[i-1, w] item i is not part of

the solution, and we are continue tracing with c[i-1, w]. Otherwise item i is part of the

solution, and we continue tracing with c[i-1, w-W].

Analysis

This dynamic-0-1-kanpsack algorithm takes θ(nw) times, broken up as follows: θ(nw) times

to fill the c-table, which has (n +1).(w +1) entries, each requiring θ(1) time to compute.

O(n) time to trace the solution, because the tracing process starts in row n of the table and

moves up 1 row at each step.

3.6. TRAVELING SALESMAN PROBLEM

We will be able to apply the dynamic programming technique to instances of the traveling

salesman problem, if we come up with a reasonable lower bound on tour lengths.

One very simple lower bound can be obtained by finding the smallest element in the

intercity distance matrix D and multiplying it by the number of cities it. But there is a less

obvious and more informative lower bound, which does not require a lot of work to

compute.

It is not difficult to show that we can compute a lower bound on the length I of any tour as

follows.

For each city i, 1 ≤ i ≤ n, find the sum si of the distances from city i to the two nearest

cities; compute the sums of these n numbers; divide the result by 2, and, it all the distances

are integers, round up the result to the nearest integer:

www.geitcse.tk

CS1252-DAA

51

lb=S/2

Fig: (a) Weighted graph.

b) State-space tree of the branch-and- bound algorithm applied to this graph.

(The list of vertices in a node specifies a beginning part of the

Hamiltonian circuits represented by the node.)

For example, for the instance of the above figure, formula yields

lb =  [(1 + 3) + (3 + 6) + (1 + 2) + (3 + 4) + (2 + 3)] /2 = 14.

We now apply the branch and bound algorithm, with the bounding function given by

formula, to find the shortest Hamiltonian circuit for the graph of the above figure (a). To

reduce the amount of potential work, we take advantage of two observations.

First, without loss of generality, we can consider only tours that start at a.

Second, because our graph is undirected, we can generate only tours in which b is visited

before c. In addition, after visiting n-1 = 4 cities, a tour has no choice but to visit the

remaining unvisited city and return to the starting one. The state-space tree tracing the

algorithm‘s application is given in the above figure (b).

The comments we made at the end of the preceding section about the strengths and

weaknesses of backtracking are applicable to branch-and-bound as well. To reiterate the

www.geitcse.tk

CS1252-DAA

52

main point: these state-space tree techniques enable us to solve many large instances of

difficult combinatorial problems.

As a rule, however, it is virtually impossible to predict which instances will be solvable in a

realistic amount of time and which will not.

Incorporation of additional information, such as symmetry of a game‘s board, can widen

the range of solvable instances. Along this line, a branch-and- bound algorithm can be

sometimes accelerated by knowledge of the objective function‘s value of some nontrivial

feasible solution.

The information might be obtainable—say, by exploiting specifics of the data or even, for

some problems, generated randomly—before we start developing a state-space tree. Then

we can use such a solution immediately as the best one seen so far rather than waiting for

the branch-and-bound processing to lead us to the first feasible solution.

In contrast to backtracking, solving a problem by branch-and-bound ha both the challenge

and opportunity of choosing an order of node generation and finding a good bounding

function.

Though the best-first rule we used above is a sensible approach, it mayor may not lead to a

solution faster than other strategies.

www.geitcse.tk

CS1252-DAA

53

IMPORTANT QUESTIONS

PART A

1. Define dynamic programming.

2. What are the multistage of graphs?

3. What are all the shortest paths in binary search?

4. Define Binary Search.

5. What are the applications of binary search?

6. State advantages & Disadvantages of binary search.

7. Explain Binary search tree.

8. What are the two types of searching algorithm?

9. Define the Following Terms:

(i) Tree Edge

(ii) Back Edge

(iii) Cross Edge

10. State the following terms:

(i) Balanced Tree

(ii) Unbalanced Tree

11. What is height of balanced tree?

12. What is balance factor?

13. Define rotation.

PART B

1Solve the all pair shortest path problem for the diagraph with the

weighted matrix given below:-

a b c d

a 0 ∞ 3 ∞

b 2 0 ∞ ∞

c ∞ 7 0 1

d 6 ∞ ∞ 0

2.Define AVL tree.Explain the construction sequence of AVL tree with

simple example.

3 (a) Give an algorithm for selection sort & analyze your algorithm. (10)

(b) Give Strength & Weakness of Brute force algorithm. (6)

www.geitcse.tk

CS1252-DAA

54

4 . Give a suitable example & explain the Breadth first search &

Depth first search. (16)

5. Find the number of comparisons made by the sentinel version

of sequential search algorithm for in,

(i)Worst case

(ii)Average case (16)

www.geitcse.tk

CS1252-DAA

55

UNIT IV BACKTRACKING

Backtracking – General method – 8 Queens Problem – Sum of subsets – Graph coloring –

Hamiltonian problem – Knapsack problem

4.1. BACKTRACKING

Many problems are difficult to solve algorithmically. Backtracking makes it possible to

solve at least some large instances of difficult combinatorial problems.

4.1.1.. GENERAL METHOD

 The principal idea is to construct solutions one component at a time and evaluate

such partially constructed candidates as follows.

 If a partially constructed solution can be developed further without violating the

problem‘s constraints, it is done by taking the first remaining legitimate option for

the next component.

 If there is no legitimate option for the next component, no alternatives for any

remaining component need to be considered. In this case, the algorithm backtracks

to replace the last component of the partially constructed solution with its next

option.

4.1.2. STATE-SPACE TREE

It is convenient to implement this kind of processing by constructing a tree of choices being

made, called the state-space tree. Its root represents an initial state before the search for a

solution begins. The nodes of the first level in the tree represent the choices made for the

first component of a solution; the nodes of the second level represent the choices for the

second component, and so on.

A node in a state-space tree is said to be promising if it corresponds to a partially

constructed solution that may still lead to a complete solution; otherwise, it is called

nonpromising.

Leaves represent either nonpromising dead ends or complete solutions found by the

algorithm.

4.2. N-QUEENS PROBLEM

The problem is to place it queens on an n-by-n chessboard so that no two queens attack

each other by being in the same row or in the same column or on the same diagonal. For n

= 1, the problem has a trivial solution, and it is easy to see that there is no solution for n = 2

www.geitcse.tk

CS1252-DAA

56

and n =3. So let us consider the four-queens problem and solve it by the backtracking

technique. Since each of the four queens has to be placed in its own row, all we need to do

is to assign a column for each queen on the board presented in the following figure.

Fig: Board for the Four-queens problem

Steps to be followed

 We start with the empty board and then place queen 1 in the first possible position of its

row, which is in column 1 of row 1.

 Then we place queen 2, after trying unsuccessfully columns 1 and 2, in the first

acceptable position for it, which is square (2,3), the square in row 2 and column 3. This

proves to be a dead end because there i no acceptable position for queen 3. So, the

algorithm backtracks and puts queen 2 in the next possible position at (2,4).

 Then queen 3 is placed at (3,2), which proves to be another dead end.

 The algorithm then backtracks all the way to queen 1 and moves it to (1,2). Queen 2

then goes to (2,4), queen 3 to (3,1), and queen 4 to (4,3), which is a solution to the

problem.

The state-space tree of this search is given in the following figure.

www.geitcse.tk

CS1252-DAA

57

Fig: State-space tree of solving the four-queens problem by back tracking.

(x denotes an unsuccessful attempt to place a queen in the indicated column.

The numbers above the nodes indicate the order in which the nodes are generated)

If other solutions need to be found, the algorithm can simply resume its operations at the

leaf at which it stopped. Alternatively, we can use the board‘s symmetry for this purpose.

4.3. SUBSET-SUM PROBLEM

Subset-Sum Problem is finding a subset of a given set S = {s1,s2….sn} of n positive

integers whose sum is equal to a given positive integer d.

For example, for S = {1, 2, 5, 6, 8) and d = 9, there are two solutions: {1, 2, 6} and {1, 8}.

Of course, some instances of this problem may have no solutions.

It is convenient to sort the set‘s elements in increasing order. So we will assume that

s1 ≤ s2 ≤ ……. ≤ sn

 The state-space tree can be constructed as a binary tree as that in the following figure

for the instances S = (3, 5, 6, 7) and d = 15.

 The root of the tree represents the starting point, with no decisions about the given

elements made as yet.

 Its left and right children represent, respectively, inclusion and exclusion ofs1 in a set

being sought.

 Similarly, going to the left from a node of the first level corresponds to inclusion of s2,

while going to the right corresponds to its exclusion, and soon.

 Thus, a path from the root to a node on the ith level of the tree indicates which of the

first i numbers have been included in the subsets represented by that node.

 We record the value of s‘ the sum of these numbers, in the node, Ifs is equal to d. we

have a solution to the problem.

www.geitcse.tk

CS1252-DAA

58

 We can either, report this result and stop or, if all the solutions need to he found,

continue by backtracking to the node‘s parent.

 If s‘ is not equal to d, we can terminate the node as nonpromising if either of the two

inequalities holds:

4.3.1. Pseudocode For Backtrack Algorithms

www.geitcse.tk

CS1252-DAA

59

Fig: Complete state-space tree of the backtracking algorithm

(applied to the instance S = (3, 5, 6, 7) and d = 15 of the subset-sum problem. The number

inside a node is the sum of the elements already included in subsets represented by the

node. The inequality below a leaf indicates the reason for its termination)

4.4. GRAPH COLORING

A coloring of a graph is an assignment of a color to each vertex of the graph so that no two

vertices connected by an edge have the same color. It is not hard to see that our problem is

one of coloring the graph of incompatible turns using as few colors as possible.

The problem of coloring graphs has been studied for many decades, and the theory of

algorithms tells us a lot about this problem. Unfortunately, coloring an arbitrary graph with

as few colors as possible is one of a large class of problems called "NP-complete

problems," for which all known solutions are essentially of the type "try all possibilities."

A k-coloring of an undirected graph G = (V, E) is a function c : V → {1, 2,..., k} such that

c(u) ≠ c(v) for every edge (u, v) E. In other words, the numbers 1, 2,..., k represent the k

colors, and adjacent vertices must have different colors. The graph-coloring problem is to

determine the minimum number of colors needed to color a given graph.

a. Give an efficient algorithm to determine a 2-coloring of a graph if one

exists.

www.geitcse.tk

CS1252-DAA

60

b. Cast the graph-coloring problem as a decision problem. Show that your

decision problem is solvable in polynomial time if and only if the graph-

coloring problem is solvable in polynomial time.

c. Let the language 3-COLOR be the set of graphs that can be 3-colored. Show

that if 3-COLOR is NP-complete, then your decision problem from part (b)

is NP-complete.

To prove that 3-COLOR is NP-complete, we use a reduction from 3-CNF-

SAT. Given a formula φ of m clauses on n variables x, x,..., x, we construct

a graph G = (V, E) as follows.

The set V consists of a vertex for each variable, a vertex for the negation of

each variable, 5 vertices for each clause, and 3 special vertices: TRUE,

FALSE, and RED. The edges of the graph are of two types: "literal" edges

that are independent of the clauses and "clause" edges that depend on the

clauses. The literal edges form a triangle on the special vertices and also

form a triangle on x, ¬x, and RED for i = 1, 2,..., n.

d. Argue that in any 3-coloring c of a graph containing the literal edges,

exactly one of a variable and its negation is colored c(TRUE) and the other

is colored c(FALSE).

Argue that for any truth assignment for φ, there is a 3-coloring of the graph

containing just the literal edges.

The widget is used to enforce the condition corresponding to a clause (x y z). Each clause

requires a unique copy of the 5 vertices that are heavily shaded; they connect as shown to

the literals of the clause and the special vertex TRUE.

e. Argue that if each of x, y, and z is colored c(TRUE) or c(FALSE), then the

widget is 3-colorable if and only if at least one of x, y, or z is colored

c(TRUE).

f. Complete the proof that 3-COLOR is NP-complete.

www.geitcse.tk

CS1252-DAA

61

Fig: The widget corresponding to a clause (x y z), used in Problem

4.5. HAMILTONIAN CIRCUIT PROBLEM

As our next example, let us consider the problem of finding a Hamiltonian circuit in the

graph of Figure 11.3a. Without loss of generality, we can assume that if a Hamiltonian

circuit exists, it starts at vertex a. Accordingly, we make vertex a the root of the state-space

tree (Figure 11.3b).

The first component of our future solution, if it exists, is a first intermediate vertex of a

Hamiltonian cycle to be constructed. Using the alphabet order to break the three-way tie

among the vertices adjacent to a, we select vertex b. From b, the algorithm proceeds to c,

then to d, then to e, and finally to f, which proves to be a dead end. So the algorithm

backtracks from f to e, then to d. and then to c, which provides the first alternative for the

algorithm to pursue.

Going from c to e eventually proves useless, and the algorithm has to backtrack from e to c

and then to b. From there, it goes to the vertices f, e, c, and d, from which it can

legitimately return to a, yielding the Hamiltonian circuit a, b, f, e, c, d, a. If we wanted to

find another Hamiltonian circuit, we could continue this process by backtracking from the

leaf of the solution found.

Figure 11.3: (a) Graph. (b) State-space tree for finding a Hamiltonian circuit. The

numbers above the nodes of the tree indicate the order in which the nodes are

generated.

www.geitcse.tk

CS1252-DAA

62

4.6. KNAPSACK PROBLEM

The knapsack problem or rucksack problem is a problem in combinatorial optimization:

Given a set of items, each with a weight and a value, determine the number of each item to

include in a collection so that the total weight is less than a given limit and the total value is

as large as possible.

It derives its name from the problem faced by someone who is constrained by a fixed-size

knapsack and must fill it with the most useful items.

The problem often arises in resource allocation with financial constraints. A similar

problem also appears in combinatorics, complexity theory, cryptography and applied

mathematics.

The decision problem form of the knapsack problem is the question "can a value of at least

V be achieved without exceeding the weight W?"

E.g. A thief enters a store and sees the following items:

His Knapsack holds 4 pounds.

What should he steal to maximize profit?

Fractional Knapsack Problem

Thief can take a fraction of an item.

$100

$10 $120

2 pd 2 pd

3 pd

A B C

www.geitcse.tk

CS1252-DAA

63

0-1 Knapsack Problem

Thief can only take or leave item. He can‘t take a fraction.

Fractional Knapsack has a greedy solution

Sort items by decreasing cost per pound

Solution = 3 pounds of item C

3 pds

C

$120

 2 pounds of item A

 2 pounds of item C

2 pds

A

$100

2 pds

C

$80

Solution = +

www.geitcse.tk

CS1252-DAA

64

If knapsack holds k=5 pds, solution is:

 1 pds A

 3 pds B

 1 pds C

General Algorithm-O(n):

Given:

weight w1 w2 … wn

cost c1 c2 … cn

Knapsack weight limit K

1. Calculate vi = ci / wi for i = 1, 2, …, n

2. Sort the item by decreasing vi

3. Find j, s.t.

w1 + w2 +…+ wj  k < w1 + w2 +…+ wj+1

Answer is
{ wi pds item i, for i  j

K-ij wi pds item j+1

200

140

240

150

cost

weight

A

B

C

D

1

pd

3

pd

2

pd

5

pd

30 70 80 200

www.geitcse.tk

CS1252-DAA

65

IMPORTANT QUESTIONS
PART-A

1. Define Backtracking.

2. What are the applications of backtracking?

3. What are the algorithm design techniques?

4. Define n-queens problem.

5. Define Hamiltonian Circuit problem.

6. Define sum of subset problem.

7. What is state space tree?

8. Define Branch & Bound method.

9. Define assignment problem.

10. What is promising & non-promising node?

11. Define Knapsack‘s problem.

12. Define Travelling salesman problem.

13. State principle of backtracking.

14. Compare Backtracking & Branch and Bound techniques with an example.

15. What are the applications of branch & bound?(or) What are the examples

of branch & bound?

16.In Backtracking method,how the problem can be categorized?

17.How should be determine the solution in backtracking algorithm?

18.Obtain all possible solutions to 4-Queen‘s problem.

19.Generate atleast 3-solutions for 5-Queen‘s problem.

20.Draw a pruned state space tree for a given sum of subset problem:

S={3,4,5,6} and d=13

PART-B:

1. Explain the n-Queen‘s problem & discuss the possible solutions. (16)

2. Solve the following instance of the knapsack problem by the branch &

bound algorithm. (16)

3. Discuss the solution for Travelling salesman problem using branch &

bound technique. (16)

4. Apply backtracking technique to solve the following instance of subset

sum problem : S={1,3,4,5} and d=11 (16)

5. Explain subset sum problem & discuss the possible solution strategies using

backtracking. (16)

www.geitcse.tk

CS1252-DAA

66

UNIT V TRAVERSALS, BRANCH AND BOUND

Graph traversals – Connected components – Spanning trees – Biconnected components –

Branch and Bound – General methods (FIFO and LC) – 0/1 Knapsack problem –

Introduction to NP-hard and NP-completeness

5.1. GRAPH TRAVERSALS - BREADTH FIRST SEARCH

 WORKING PRINCIPLE:

1. It starts from the arbitrary vertex

2. It visits all vertices adjacent to starting vertex.

3. Then all unvisited vertices between two edjes apart from it.

 4. If there still remain unvisited vertices, the algorithm has to be restarted at an

arbitrary vertex of another connected component of the graph.

♦ Queue is used to trace BFS.

♦ The queue is initialized with the traversal's starting vertex, which is marked as visited. ♦

On each iteration, the algorithm identifies all unvisited vertices that are adjacent to the front

vertex, marks them as visited, and adds them to the queue; after that, the front vertex is

removed from the queue.

5.1.1. BREADTH FIRST SEARCH FOREST

♦ Similarly to a DFS traversal, it is useful to accompany a BFS traversal by constructing

the so-called breadth-first search forest.

1. The traversal's starting vertex serves as the root of the first tree in such a forest.

2. New unvisited vertex is reached for the first time, the vertex is attached as a child to

 the vertex it is being reached from with an edge called a tree edge.

3. If an edge leading to a previously visited vertex other than its immediate

predecessor (i.e., its parent in the tree) is encountered, the edge is noted as a cross

edge.

♦ Here is a pseudo code of the breadth-first search.

ALGORITHM BFS(G)

//Implements a breadth-first search traversal of a given graph

 //Input: Graph G = (V, E)

//Output: Graph G with its vertices marked with consecutive integers in the order they

have been visited by the BFS traversal mark each vertex in V with 0 as a mark of being

www.geitcse.tk

CS1252-DAA

67

"unvisited"

count  0

for each vertex v in V do

if v is marked with 0

bfs(v)

bfs(v)

//visits all the unvisited vertices connected to vertex v and assigns them the numbers in

the order they are visited via global variable count

count  count + 1; mark v with count and initialize a queue with v

while the queue is not empty do

 for each vertex w in V adjacent to the front's vertex v do

 if w is marked with 0

 count  count + 1; mark w with count add w to the queue

 remove vertex v from the front of the queue

5.1.2. EFFICIENCY

♦ Breadth-first search has the same efficiency as depth-first search:

♦ BFS can be used to check the connectivity and acyclicity of a graph as same as DFS.

 for the adjacency linked list representation.

5.1.3. ORDERING OF VERTICES

♦ It yields a single ordering of vertices because the queue is a FIFO (first-in first-out)

structure, and hence the order in which vertices are added to the queue is the same order in

which they are removed from it.

♦ As to the structure of a BFS forest, it can also have two kinds of edges: tree edges and

cross edges. Tree edges are the ones used to reach previously unvisited vertices. Cross

edges connect vertices to those visited before but, unlike back edges in a DFS tree, they

connect either siblings or cousins on the same or adjacent levels of a BFS tree.

5.1.4. APPLICATION OF BFS

♦ Finally, BFS can be used to

♦ Check connectivity and acydicity of a graph

♦ BFS can be used for finding a path with the fewest number of edges between two given

vertices.

♦ This figure explains the BFS algorithm to find the minimum edge path.

www.geitcse.tk

CS1252-DAA

68

(a) (b)

a) Graph. (b) Part of its BFS tree that identifies the minimum-edge path from a to g.

5.1.5. PROCEDURE TO FIND THE FEWEST NUMBER OF EDGES BETWEEN

TWO VERTICES:

♦ Start a BFS traversal at one of the given edge

♦ Stop it as soon as the other vertex is reached.

♦ For example, path a-b-e-g in the graph has the fewest number of edges among all

the paths between

5.2. DEPTH FIRST SEARCH

 WORKING PRINCIPLE

♦ Depth-first search starts visiting vertices of a graph at an arbitrary vertex by marking

it as having been visited.

♦ On each iteration, the algorithm proceeds to an unvisited vertex that is adjacent to the

one it is currently in.

♦ The algorithm stops, when there is no unvisited adjacent unvisited vertex.

♦ At a dead end, the algorithm backs up one edge to the vertex it came from and tries to

continue visiting unvisited vertices from there.

♦ The algorithm eventually halts, when there is no unvisited unvisited vertex.

♦ Stack is used totrace the operation of depth-first search.

♦ Push a vertex onto the stack when the vertex is reached for the first time (i.e., the

visit of the vertex starts), and pop a vertex off the stack when it becomes a dead end

(i.e., the visit of the vertex ends).

5.2.1. DEPTH FIRST SEARCH FOREST

♦ It is also very useful to accompany a depth-first search traversal by constructing the so

called depth-first search forest.

www.geitcse.tk

CS1252-DAA

69

♦ The traversal's starting vertex serves as the root of the first tree in such a forest.

Whenever a new unvisited vertex is reached for the first time, it is attached as a child to the

vertex from which it is being reached. Such an edge is called a tree edge because the set of

all such edges forms a forest.

♦ The algorithm may also encounter an edge leading to a previously visited vertex other

than its immediate predecessor (i.e., its parent in the tree). Such an edge is called a back

edge because it connects a vertex to its ancestor, other than the parent, in the depth-first

search forest.

www.geitcse.tk

CS1252-DAA

70

♦ Here is a pseudo code of the depth-first search.

5.2.2. ALGORITHM DFS(G)

Algorithm Dfs(G)

//Implements a depth-first search traversal of a given graph

//Input: Graph G = (V, E)

//0utput: Graph G with its vertices marked with consecutive integers in the

order they've been first encountered by the DFS traversal mark each vertex in V

with 0 as a mark of being "unvisited"

count  0

for each vertex v in V do

 if v is marked with 0

dfs (v)

dfs(v)

//visits recursively all the unvisited vertices connected to vertex v and assigns

them the numbers in the order they are encountered via global variable count

count count + 1; mark v with count

for each vertex w in V adjacent to v do

 if w is marked with 0

 dfs(w)

 (a) (c) (d)

 (b)

Fig: Example of a DFS traversal

(a) Graph. (b) Traversal's stack (the first subscript number indicates the order in which

a vertex was visited, i.e., pushed onto the stack; the second one indicates the order in

www.geitcse.tk

CS1252-DAA

71

which it became a dead-end, i.e., popped off the stack). (c) DFS forest (with the tree

edges shown with solid lines and the back edges shown with dashed lines).

♦ A DFS traversal itself and the forest-like representation of a graph it provides have

proved to be extremely helpful for the development of efficient algorithms for checking

many important properties of graphs.

♦ DFS yields two orderings of vertices:

1. The order in which the vertices are reached for the first time (pushed onto the stack)

2. The order in which the vertices become dead ends (popped off the stack).

These orders are qualitatively different, and various applications can take advantage of

either of them.

5.2.3. APPLICATIONS OF DFS

♦ DFS is used for

♦ Checking connectivity of the graph

♦ Checking a cyclicity of a graph.

Checking connectivity of the graph

♦ Checking a graph's connectivity can be done as follows.

♦ Start a DFS traversal at an arbitrary vertex

♦ Check, after the algorithm halts, whether all the graph's vertices will have been

visited.

♦ If they have, the graph is connected; otherwise, it is not connected

Checking a cyclicity of a graph

♦ If there is a back edge in DFS forest , then the graph is acyclic.

♦ If there is a back edge,from some vertex u to its ancestor v (e.g., the back edge

from d to a in Figure 5.5c), the graph has a cycle that comprises the path from :J to u

via a sequence of tree edges in the DFS forest followed by the back edge from u to

v.

Articulation point

♦ A vertex of a connected graph is said to be its articulation point if its removal with all

edges incident to it breaks the graph into disjoint pieces.

5.3. CONNECTED COMPONENT

A connected component of a graph G is a maximal connected induced subgraph, that is, a

connected induced subgraph that is not itself a proper subgraph of any other connected

subgraph of G

www.geitcse.tk

CS1252-DAA

72

A graph and one of its subgraphs.

The above Figure is a connected graph. It has only one connected component, namely

itself. Following figure is a graph with two connected components.

An unconnected graph.

5.3.1. BICONNECTED COMPONENTS

An articulation point of a graph is a vertex v such that when we remove v and all edges

incident upon v , we break a connected component of the graph into two or more pieces.

A connected graph with no articulation points is said to be biconnected. Depth-first search

is particularly useful in finding the biconnected components of a graph.

The problem of finding articulation points is the simplest of many important problems

concerning the connectivity of graphs. As an example of applications of connectivity

algorithms, we may represent a communication network as a graph in which the vertices

are sites to be kept in communication with one another.

A graph has connectivity k if the deletion of any k-1 vertices fails to disconnect the graph.

For example, a graph has connectivity two or more if and only if it has no articulation

points, that is, if and only if it is biconnected.

The higher the connectivity of a graph, the more likely the graph is to survive the failure of

some of its vertices, whether by failure of the processing units at the vertices or external

attack.

We shall here give a simple depth-first search algorithm to find all the articulation points of

a connected graph, and thereby test by their absence whether the graph is biconnected.

1. Perform a depth-first search of the graph, computing dfnumber [v] for each vertex v. In

essence, dfnumber orders the vertices as in a preorder traversal of the depth-first spanning

tree.

www.geitcse.tk

CS1252-DAA

73

2. For each vertex v, compute low [v], which is the smallest dfnumber of v or of any

vertex w reachable from v by following down zero or more tree edges to a descendant x of

v (x may be v) and then following a back edge (x, w). We compute low [v] for all

vertices v by visiting the vertices in a postorder traversal. When we process v, we have

computed low [y] for every child y of v. We take low [v] to be the minimum of a.

dfnumber [v],b. dfnumber [z] for any vertex z for which there is a back edge (v, z) and c.

low [y] for any child y of v.

Now we find the articulation points as follows.

a. The root is an articulation point if and only if it has two or more children. Since there

are no cross edges, deletion of the root must disconnect the subtrees rooted at its children,

as a disconnects {b, d, e} from {c, f, g} in Fig..

b. A vertex v other than the root is an articulation point if and only if there is some child w

of v such that low [w] ≥ dfnumber [v]. In this case, v disconnects w and its descendants

from the rest of the graph. Conversely, if low [w] < dfnumber [v], then there must be a way

to get from w down the tree and back to a proper ancestor of v (the vertex whose dfnumber

is low [w]), and therefore deletion of v does not disconnect w or its descendants from the

rest of the graph.

5.4. SPANNING TREES

A spanning tree for G is a free tree that connects all the vertices in V

5.4.1. MINIMUM-COST SPANNING TREES

Suppose G = (V, E) is a connected graph in which each edge (u, v) in E has a cost c(u, v)

attached to it. The cost of a spanning tree is the sum of the costs of the edges in the tree.

A typical application for minimum-cost spanning trees occurs in the design of

communications networks. The vertices of a graph represent cities and the edges possible

communications links between the cities. The cost associated with an edge represents the

cost of selecting that link for the network. A minimum-cost spanning tree represents a

communications network that connects all the cities at minimal cost.

5.4.2. The MST Property

There are several different ways to construct a minimum-cost spanning tree. Many of these

methods use the following property of minimum-cost spanning trees, which we call the

MST property

 Let G = (V, E) be a connected graph with a cost function defined on the edges. Let U be

some proper subset of the set of vertices V. If (u, v) is an edge of lowest cost such that u �

www.geitcse.tk

CS1252-DAA

74

U and v ∈ V-U, then there is a minimum-cost spanning tree that includes (u, v) as an edge.

The proof hat every minimum-cost spanning tree satisfies the MST property is not hard.

Suppose to the contrary that there is no minimum-cost spanning tree for G that includes (u,

v). Let T be any minimum-cost spanning tree for G. Adding (u, v) to T must introduce a

cycle, since T is a free tree and therefore satisfies property (2) for free trees. This cycle

involves edge (u, v). Thus, there must e another edge (u', v') in T such that u' ∈ U and v' ∈

V-U, as illustrated in Fig. 7.5. If not, there could be no way for the cycle to get from u to v

without following the edge (u, v) a second time. Deleting the edge (u', v') breaks the

cycle and yields a spanning tree T' whose

5.4.3. PRIM’S ALGORITHM

Definition:

A spanning tree of a connected graph is its connected acyclic subgraph (i.e., a tree) that

contains all the vertices of the graph. A minimum spanning tree of a weighted connected

graph is its spanning tree of the smallest weight, where the weight of a tree is defined as the

sum of the weights on all its edges. The minimum spanning tree problem is the problem of

finding a minimum spanning tree for a given weighted connected graph.

Two serious difficulties to construct Minimum Spanning Tree

1. The number of spanning trees grows exponentially with the graph size (at least for

dense graphs).

2. Generating all spanning trees for a given graph is not easy.

Figure: Graph and its spanning trees; T1 is the Minimum Spanning Tree

 Prim‘s algorithm constructs a minimum spanning tree through a sequence of expanding

subtrees. The initial subtree in such a sequence consists of a single vertex selected

arbitrarily from the set V of the graph‘s vertices.

 On each iteration, we expand the current tree in the greedy manner by simply attaching

to it the nearest vertex not in that tree. The algorithm stops after all the graph‘s vertices

have been included in the tree being constructed.

www.geitcse.tk

CS1252-DAA

75

 Since the algorithm expands a tree by exactly one vertex on each of its iterations, the

total number of such iterations is n-1, where n is the number of vertices in the graph.

The tree generated by the algorithm is obtained as the set of edges used for the tree

expansions.

 The nature of Prim‘s algorithm makes it necessary to provide each vertex not in the

current tree with the information about the shortest edge connecting the vertex to a tree

vertex.

 We can provide such information by attaching two labels to a vertex: the name of the

nearest tree vertex and the length (the weight) of the corresponding edge.

 Vertices that are not adjacent to any of the tree vertices can be given the label

indicating their ―infinite‖ distance to the tree vertices a null label for the name of the

nearest tree vertex.

 With such labels, finding the next vertex to be added to the current tree T = (VT, ET)

become simple task of finding a vertex with the smallest distance label in the set V -

VT. Ties can be broken arbitrarily.

 After we have identified a vertex u* to be added to the tree, we need to perform two

operations:

o Move u* from the set V—VT to the set of tree vertices VT.

o For each remaining vertex U in V—VT - that is connected to u* by a

shorter edge than the u‘s current distance label, update its labels by u*

and the weight of the edge between u* and u, respectively.

Pseudocode of this algorithm

www.geitcse.tk

CS1252-DAA

76

The following figure demonstrates the application of Prim‘s algorithm to a specific graph.

Fig: Graph given to find minimum spanning tree

Fig: Application of Prim’s algorithm

www.geitcse.tk

CS1252-DAA

77

5.4.4. KRUSKAL’S ALGORITHM

This is another greedy algorithm for the minimum spanning tree problem that also always

yields an optimal solution.

Kruskal‘s algorithm looks at a minimum spanning tree for a weighted connected graph G =

{V, E} as an acyclic subgraph with |V|-1 edges for which the sum of the edge weights is

the smallest. Consequently, the algorithm constructs a minimum spanning tree as an

expanding sequence of subgraphs, which are always acyclic but are not necessarily

connected on the intermediate stages of the algorithm.

 The correctness of Kruskal‘s algorithm can be proved by repeating the essential steps of

the proof of Prim‘s algorithm. The fact that ET is actually a tree in Prim‘s algorithm, but

generally just an acyclic subgraph in Kruskal‘s algorithm turns out to be an obstacle

that can be overcome.

 Applying Prim‘s and Kruskal‘s algorithms to the same small graph by hand may create

an impression that the latter is simpler than the former. This impression is wrong

because, on each of its iterations, Kruskal‘s algorithm has to check whether the addition

of the next edge to the edges already selected would create a cycle.

 It is not difficult to see that a new cycle is created if and only if the new edge connects

two vertices already connected by a path, i.e., if and only if the two vertices belong to

the same connected component. Note also that each connected component of a

subgraph generated by Kruskal‘s algorithm is a tree because it has no cycles.

www.geitcse.tk

CS1252-DAA

78

Fig: Graph given to find minimum spanning tree

Fig: Application of Kruskal’s algorithm

5.5. BRANCH-AND-BOUND

Backtracking is to cut off a branch of the problem‘s state-space tree as soon as we can

deduce that it cannot lead to a solution.

This idea can be strengthened further if we deal with an optimization problem, one that

seeks to minimize or maximize an objective function, usually subject to some constraints.

Note that in the standard terminology of optimization problems, a feasible solution is a

point in the problem‘s search space that satisfies all the problem‘s constraints

(e.g. a Hamiltonian circuit in the traveling salesman problem,

www.geitcse.tk

CS1252-DAA

79

a subset of items whose total weight does not exceed the knapsack‘s

capacity),

while an optimal solution is a feasible solution with the best value of the objective function

(e.g., the shortest Hamiltonian circuit, the most valuable subset of items that fit the

knapsack).

Compared to backtracking, branch-and-bound requires two additional items.

 A way to provide, for every node of a state-space tree, a bound on the best value of

the objective functions on any solution that can be obtained by adding further

components to the partial solution represented by the node

 The value of the best solution seen so far

5.6. GENERAL METHOD

 If this information is available, we can compare a node‘s bound value with the

value of the best solution seen so far:

 if the bound value is not better than the best solution seen so far—i.e., not smaller

for a minimization problem and not larger for a maximization problem—the node is

nonpromising and can be terminated (some people say the branch is pruned)

because no solution obtained from it can yield a better solution than the one already

available.

E.g. Termination of search path

In general, we terminate a search path at the current node in a state-space tree of a branch-

and-bound algorithm for any one of the following three reasons:

1. The value of the node‘s bound is not better than the value of the best solution seen

so far.

2. The node represents no feasible solutions because the constraints of the problem are

already violated.

3. The subset of feasible solutions represented by the node consists of a single point

(and hence no further choices can be made)—in this case we compare the value of

the objective function for this feasible solution with that of the best solution seen so

far and update the latter with the former if the new solution is better.

5.6.1. ASSIGNMENT PROBLEM

Let us illustrate the branch-and-bound approach by applying it to the problem of assigning

n people to n jobs. So that the total cost of the assignment is as small as possible.

An instance of the assignment problem is specified by an n-by-n cost matrix C so that we

can state the problem as follows:

Select one element in each row of the matrix so that no two selected elements are in the

same column and their sum is the smallest possible.

www.geitcse.tk

CS1252-DAA

80

Demonstrate of solving this problem using the branch-and-bound

This is done by considering the same small instance of the problem:

To find a lower bound on the cost of an optimal selection without actually solving the

problem, we can do several methods.

For example, it is clear that the cost of any solution, including an optimal one, cannot be

smaller than the sum of the smallest elements in each of the matrix‘s rows.

For the instance here, this sum is 2 +3 + 1 + 4 = 10.

It is important to stress that this is not the cost of any legitimate selection (3 and 1 came

from the same column of the matrix); it is just a lower bound on the cost of any legitimate

selection.

We Can and will apply the same thinking to partially constructed solutions. For example,

for any legitimate selection that selects 9 from the first row, the lower bound will be 9 + 3

+ 1 + 4 = 17.

Fig: Levels 0 and 1 of the state-space tree for the instance of the assignment problem

(being solved with the best-first branch-and- bound algorithm. The number above a node

shows the order in which the node was generated. A node‘s fields indicate the job number

assigned to person a, and the lower bound value, lb for this node.)

This problem deals with the order in which the tree‘s nodes will he generated. Rather than

generating a single child of the last promising node as we did in backtracking, we wilt

generate all the children of the most promising node among non-terminated leaves in the

current tree. (Non-terminated, je., still promising, leaves are also called live.)

www.geitcse.tk

CS1252-DAA

81

To find which of the nodes is most promising, we are comparing the lower bounds of the

live node. It is sensible to consider a node with the best bound as most promising, although

this does not, of course, preclude the possibility that an optimal solution will ultimately

belong to a different branch of the state-space tree.

This variation of the strategy is called the best-first branch-and-bound. Returning to the

instance of the assignment problem given earlier, we start with the root that corresponds to

no elements selected from the cost matrix. As the lower bound value for the root, denoted

lb is 10.

The nodes on the first level of the free correspond to four elements (jobs) in the first row of

the matrix since they are each a potential selection for the first component of the solution.

So we have four live leaves (nodes 1 through 4) that may contain an optimal solution. The

most promising of them is node 2 because it has the smallest lower bound value.

Following our best-first search strategy, we branch out from that node first by considering

the three different ways of selecting an element from the second row and not in the second

column—the three different jobs that can be assigned to person b.

Figure: Levels 0, 1. and 2 of the state-space tree for the instance of the assignment

problem

(being solved with the best-first branch-and- bound algorithm)

Of the six live leaves (nodes 1, 3, 4, 5, 6, and 7) that may contain an optimal solution, we

again choose the one with the smallest lower bound, node 5.

First, we consider selecting the third column‘s element from c‘s row (i.e., assigning person

c to job 3); this leaves us with no choice but to select the element from the fourth column of

d‘s row (assigning person d to job 4).

www.geitcse.tk

CS1252-DAA

82

This yields leafs that corresponds to the feasible solution (a →2, b→1, c→3, d →4) with

(he total cost of 13. Its sibling, node 9, corresponds to the feasible solution {a → 2, b →1, c

→ 4, d → 3) with the total cost of 25, Since its cost is larger than the cost of the solution

represented by leafs, node 9 is simply terminated.

Note that if its cost were smaller than 13. we would have to replace the information about

the best solution seen so far with the data provided by this node.

Now, as we inspect each of the live leaves of the last state-space tree (nodes 1, 3, 4, 6, and

7 in the following figure), we discover that their lower bound values are not smaller than 13

the value of the best selection seen so far (leaf 8).

Hence we terminate all of them and recognize the solution represented by leaf 8 as the

optima) solution to the problem.

Figure: Complete state-space tree for the instance of the assignment problem

(Solved with the best-first branch-and-bound algorithm)

5.7. KNAPSACK PROBLEM

Illustration

Given n items of known weights wi and values vi, i = 1,2,..., n, and a knapsack of capacity

W, find the most valuable subset of the items that fit in the knapsack. It is convenient to

order the items of a given instance in descending order by their value-to-weight ratios.

Then the first item gives the best payoff per weight unit and the last one gives the worst

payoff per weight unit, with ties resolved arbitrarily:

www.geitcse.tk

CS1252-DAA

83

It is natural to structure the state-space tree for this problem as a binary tree constructed as

follows (following figure).

Each node on the ith level of this tree, 0 ≤ i ≤ n, represents all the subsets of n items that

include a particular selection made from the first i ordered items. This particular selection

is uniquely determined by a path from the root to the node: a branch going to the left

indicates the inclusion of the next item while the branch going to the right indicates its

exclusion.

We record the total weight w and the total value v of this selection in the node, along with

some upper bound ub on the value of any subset that can be obtained by adding zero or

more items to this selection.

A simple way to compute the upper bound ub is to add to v, the total value of the items

already selected, the product of the remaining capacity of the knapsack W - w and the best

per unit payoff among the remaining items, which is vi+1/wi+1 :

As a specific example, let us apply the branch-and-bound algorithm to die same instance of

the knapsack problem.

Fig: Knapsack Problem (The knapsacks capacity W is 10.)

At the root of the state-space tree (in the following figure), no items have been selected as

yet. Hence, both the total weight of the items already selected w and their total value v are

equal to 0.

The value of the upper bound computed by formula (ub=v+(W-w)(vi+1/wi+1) is $100. Node

1, the left child of the root, represents the subsets that include item, 1.

The total weight and value of the items already included are 4 and $40, respectively; the

value of the upper bound is 40 + (10-4)*6 = $76.

www.geitcse.tk

CS1252-DAA

84

Fig: State-space tree of the branch-and-bound algorithm for the instance of the

knapsack problem

Node 2 represents the subsets that do not include item 1.

Accordingly, w = 0, v= $0, and ub=0+(10-0)*6=$60.

Since node 1 has a larger upper bound than the upper bound of node 2, it is more promising

for this maximization problem, and we branch from node 1 first. Its children—nodes 3 and

4—represent subsets with item 1 and with and without item 2, respectively.

Since the total weight w of every subset represented by node 3 exceeds the knapsack‘s

capacity, node 3 can be terminated immediately. Node 4 has the same values of w and u as

its parent; the upper bound ub is equal to 40 + (10-4)*5 = $70.

www.geitcse.tk

CS1252-DAA

85

Selecting node 4 over node 2 for the next branching, we get nodes 5 and 6 by respectively

including and excluding item 3. The total weights and values as well as the upper bounds

for these nodes are computed in the same way as for the preceding nodes.

Branching from node 5 yields node 7, represents no feasible solutions and node 8 that

represents just a single subset {1, 3}.

The remaining live nodes 2 and 6 have smaller upper-bound values than the value of the

solution represented by node 8. Hence, both can be terminated making the subset {1, 3} of

node 8 the optimal solution to the problem.

Solving the knapsack problem by a branch-and-bound algorithm has a rather unusual

characteristic.

Typically, internal nodes of a state-space tree do not define a point of the problem‘s search

space, because some of the solution‘s components remain undefined. For the knapsack

problem, however, every node of the tree represents a subset of the items given.

We can use this fact to update the information about the best subset seen so far after

generating each new node in the tree. If we did this for the instance investigated above, we

could have terminated nodes 2 & 6 before node 8 was generated because they both are

inferior to the subset of value $65 of node 5.

5.8. INTRODUCTION TO NP-HARD AND NP-COMPLETENESS

P: the class of decision problems that are solvable in O(p(n)) time, where p(n) is a

polynomial of problem‘s input size n

Examples:

b searching

b element uniqueness

b graph connectivity

b graph acyclicity

primality testing (finally proved in 2002)

NP (nondeterministic polynomial): class of decision problems whose proposed solutions

can be verified in polynomial time = solvable by a nondeterministic polynomial algorithm

A nondeterministic polynomial algorithm is an abstract two-stage procedure that:

b generates a random string purported to solve the problem

b checks whether this solution is correct in polynomial time

www.geitcse.tk

CS1252-DAA

86

E.g. Problem: Is a boolean expression in its conjunctive normal form (CNF) satisfiable, i.e.,

are there values of its variables that makes it true?

This problem is in NP. Nondeterministic algorithm:

b Guess truth assignment

b Substitute the values into the CNF formula to see if it evaluates to true

Example: (A | ¬B | ¬C) & (A | B) & (¬B | ¬D | E) & (¬D | ¬E)

Truth assignments:

A B C D E

0 0 0 0 0

 . . .

1 1 1 1 1

Checking phase: O(n)

5.8.1. PROBLEMS ARE IN NP?

b Hamiltonian circuit existence

b Partition problem: Is it possible to partition a set of n integers into two disjoint

subsets with the same sum?

b Decision versions of TSP, knapsack problem, graph coloring, and many other

combinatorial optimization problems. (Few exceptions include: MST, shortest

paths)

b All the problems in P can also be solved in this manner (but no guessing is

necessary), so we have:

 P  NP

b Big question: P = NP ?

NP-complete

problem

NP problems

www.geitcse.tk

CS1252-DAA

87

NP Hard problem:

– Most problems discussed are efficient (poly time)

– An interesting set of hard problems: NP-complete.

• A decision problem D is NP-complete if it‘s as hard as any problem in NP, i.e.,

 D is in NP

 every problem in NP is polynomial-time reducible to D

Cook’s theorem (1971): CNF-sat is NP-complete

Other NP-complete problems obtained through polynomial-time reductions from a known

NP-complete problem

known

NP-complete

problem

NP problems

candidate

 f or NP -

completeness

Fig: NP Problems

Examples:

TSP, knapsack, partition, graph-coloring and hundreds of other problems of combinatorial

nature

 P = NP would imply that every problem in NP, including all NP-complete

problems, could be solved in polynomial time

 If a polynomial-time algorithm for just one NP-complete problem is discovered,

then every problem in NP can be solved in polynomial time, i.e., P = NP

 Most but not all researchers believe that P  NP , i.e. P is a proper subset of NP

www.geitcse.tk

CS1252-DAA

88

IMPORTANT QUESTIONS
PART-A

1. what is back tracking ?

2. Define n-queen‘s problem.

3. Define hamiltonian circuit problem

4. what is subset-sum problem.

5. Define branch and bound.

6. Knapsack problem.

7. Traveling salesman problem.

PART-B

1. Explain Graph traversals.

2. Explain in detail about Knapsack problem.

3. Explain traveling salesman problem with example.

www.geitcse.tk

CS1252-DAA

89

www.geitcse.tk

CS1252-DAA

90

www.geitcse.tk

CS1252-DAA

91

www.geitcse.tk

CS1252-DAA

92

www.geitcse.tk

CS1252-DAA

93

www.geitcse.tk

CS1252-DAA

94

www.geitcse.tk

